Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,230 +1,230 @@
|
|
| 1 |
-
# Importing libraries
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import json
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
from ragatouille import RAGPretrainedModel
|
| 7 |
-
from gradio_client import Client
|
| 8 |
-
from tempfile import NamedTemporaryFile
|
| 9 |
-
from sentence_transformers import CrossEncoder
|
| 10 |
-
import numpy as np
|
| 11 |
-
from time import perf_counter
|
| 12 |
-
from sentence_transformers import CrossEncoder
|
| 13 |
-
|
| 14 |
-
#calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
|
| 15 |
-
from backend.semantic_search import table, retriever
|
| 16 |
-
|
| 17 |
-
VECTOR_COLUMN_NAME = "vector"
|
| 18 |
-
TEXT_COLUMN_NAME = "text"
|
| 19 |
-
proj_dir = Path.cwd()
|
| 20 |
-
|
| 21 |
-
# Set up logging
|
| 22 |
-
import logging
|
| 23 |
-
logging.basicConfig(level=logging.INFO)
|
| 24 |
-
logger = logging.getLogger(__name__)
|
| 25 |
-
|
| 26 |
-
# Replace Mixtral client with Qwen Client
|
| 27 |
-
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
| 28 |
-
|
| 29 |
-
def system_instructions(question_difficulty, topic, documents_str):
|
| 30 |
-
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
|
| 31 |
-
|
| 32 |
-
# Ragatouille database for Colbert ie highly accurate mode
|
| 33 |
-
RAG_db = gr.State()
|
| 34 |
-
quiz_data = None
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
#defining a function to convert json file to excel file
|
| 38 |
-
def json_to_excel(output_json):
|
| 39 |
-
# Initialize list for DataFrame
|
| 40 |
-
data = []
|
| 41 |
-
gr.Warning('Generating Shareable file link..', duration=30)
|
| 42 |
-
for i in range(1, 11): # Assuming there are 10 questions
|
| 43 |
-
question_key = f"Q{i}"
|
| 44 |
-
answer_key = f"A{i}"
|
| 45 |
-
|
| 46 |
-
question = output_json.get(question_key, '')
|
| 47 |
-
correct_answer_key = output_json.get(answer_key, '')
|
| 48 |
-
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
| 49 |
-
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
| 50 |
-
|
| 51 |
-
# Extract options
|
| 52 |
-
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
| 53 |
-
options = [output_json.get(key, '') for key in option_keys]
|
| 54 |
-
|
| 55 |
-
# Add data row
|
| 56 |
-
data.append([
|
| 57 |
-
question, # Question Text
|
| 58 |
-
"Multiple Choice", # Question Type
|
| 59 |
-
options[0], # Option 1
|
| 60 |
-
options[1], # Option 2
|
| 61 |
-
options[2] if len(options) > 2 else '', # Option 3
|
| 62 |
-
options[3] if len(options) > 3 else '', # Option 4
|
| 63 |
-
options[4] if len(options) > 4 else '', # Option 5
|
| 64 |
-
correct_answer, # Correct Answer
|
| 65 |
-
30, # Time in seconds
|
| 66 |
-
'' # Image Link
|
| 67 |
-
])
|
| 68 |
-
|
| 69 |
-
# Create DataFrame
|
| 70 |
-
df = pd.DataFrame(data, columns=[
|
| 71 |
-
"Question Text",
|
| 72 |
-
"Question Type",
|
| 73 |
-
"Option 1",
|
| 74 |
-
"Option 2",
|
| 75 |
-
"Option 3",
|
| 76 |
-
"Option 4",
|
| 77 |
-
"Option 5",
|
| 78 |
-
"Correct Answer",
|
| 79 |
-
"Time in seconds",
|
| 80 |
-
"Image Link"
|
| 81 |
-
])
|
| 82 |
-
|
| 83 |
-
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
| 84 |
-
df.to_excel(temp_file.name, index=False)
|
| 85 |
-
return temp_file.name
|
| 86 |
-
# Define a colorful theme
|
| 87 |
-
colorful_theme = gr.themes.Default(
|
| 88 |
-
primary_hue="cyan", # Set a bright cyan as primary color
|
| 89 |
-
secondary_hue="yellow", # Set a bright magenta as secondary color
|
| 90 |
-
neutral_hue="purple" # Optionally set a neutral color
|
| 91 |
-
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
#gradio app creation for a user interface
|
| 95 |
-
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Create a single row for the HTML and Image
|
| 99 |
-
with gr.Row():
|
| 100 |
-
with gr.Column(scale=2):
|
| 101 |
-
gr.Image(value='logo.png', height=200, width=200)
|
| 102 |
-
with gr.Column(scale=6):
|
| 103 |
-
gr.HTML("""
|
| 104 |
-
<center>
|
| 105 |
-
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span>STUDENTS QUIZBOT</h1>
|
| 106 |
-
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
| 107 |
-
<i>⚠️
|
| 108 |
-
</center>
|
| 109 |
-
""")
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
| 115 |
-
|
| 116 |
-
with gr.Row():
|
| 117 |
-
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
| 118 |
-
model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
|
| 119 |
-
value='(ACCURATE) BGE reranker', label="Embeddings",
|
| 120 |
-
info="First query to ColBERT may take a little time")
|
| 121 |
-
|
| 122 |
-
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
| 123 |
-
quiz_msg = gr.Textbox()
|
| 124 |
-
|
| 125 |
-
question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
| 126 |
-
|
| 127 |
-
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
|
| 128 |
-
def generate_quiz(question_difficulty, topic, cross_encoder):
|
| 129 |
-
top_k_rank = 10
|
| 130 |
-
documents = []
|
| 131 |
-
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
| 132 |
-
|
| 133 |
-
if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
| 134 |
-
gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
|
| 135 |
-
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
| 136 |
-
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
| 137 |
-
documents_full = RAG_db.value.search(topic, k=top_k_rank)
|
| 138 |
-
documents = [item['content'] for item in documents_full]
|
| 139 |
-
|
| 140 |
-
else:
|
| 141 |
-
document_start = perf_counter()
|
| 142 |
-
query_vec = retriever.encode(topic)
|
| 143 |
-
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
| 144 |
-
|
| 145 |
-
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
| 146 |
-
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
| 147 |
-
|
| 148 |
-
query_doc_pair = [[topic, doc] for doc in documents]
|
| 149 |
-
|
| 150 |
-
# if cross_encoder == '(FAST) MiniLM-L6v2':
|
| 151 |
-
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 152 |
-
if cross_encoder == '(ACCURATE) BGE reranker':
|
| 153 |
-
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
| 154 |
-
|
| 155 |
-
cross_scores = cross_encoder1.predict(query_doc_pair)
|
| 156 |
-
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
| 157 |
-
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
| 158 |
-
|
| 159 |
-
#creating a text prompt to Qwen model combining the documents and system instruction
|
| 160 |
-
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
|
| 161 |
-
print(' Formatted Prompt : ' ,formatted_prompt)
|
| 162 |
-
try:
|
| 163 |
-
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
|
| 164 |
-
response1 = response[1][0][1]
|
| 165 |
-
|
| 166 |
-
# Extract JSON
|
| 167 |
-
start_index = response1.find('{')
|
| 168 |
-
end_index = response1.rfind('}')
|
| 169 |
-
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
|
| 170 |
-
print('Cleaned Response :',cleaned_response)
|
| 171 |
-
output_json = json.loads(cleaned_response)
|
| 172 |
-
# Assign the extracted JSON to quiz_data for use in the comparison function
|
| 173 |
-
global quiz_data
|
| 174 |
-
quiz_data = output_json
|
| 175 |
-
# Generate the Excel file
|
| 176 |
-
excel_file = json_to_excel(output_json)
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
#Create a Quiz display in app
|
| 180 |
-
question_radio_list = []
|
| 181 |
-
for question_num in range(1, 11):
|
| 182 |
-
question_key = f"Q{question_num}"
|
| 183 |
-
answer_key = f"A{question_num}"
|
| 184 |
-
|
| 185 |
-
question = output_json.get(question_key)
|
| 186 |
-
answer = output_json.get(output_json.get(answer_key))
|
| 187 |
-
|
| 188 |
-
if not question or not answer:
|
| 189 |
-
continue
|
| 190 |
-
|
| 191 |
-
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
| 192 |
-
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
| 193 |
-
|
| 194 |
-
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
| 195 |
-
question_radio_list.append(radio)
|
| 196 |
-
|
| 197 |
-
return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
| 198 |
-
|
| 199 |
-
except json.JSONDecodeError as e:
|
| 200 |
-
print(f"Failed to decode JSON: {e}")
|
| 201 |
-
|
| 202 |
-
check_button = gr.Button("Check Score")
|
| 203 |
-
score_textbox = gr.Markdown()
|
| 204 |
-
|
| 205 |
-
@check_button.click(inputs=question_radios, outputs=score_textbox)
|
| 206 |
-
def compare_answers(*user_answers):
|
| 207 |
-
user_answer_list = list(user_answers)
|
| 208 |
-
answers_list = []
|
| 209 |
-
|
| 210 |
-
for question_num in range(1, 20):
|
| 211 |
-
answer_key = f"A{question_num}"
|
| 212 |
-
answer = quiz_data.get(quiz_data.get(answer_key))
|
| 213 |
-
if not answer:
|
| 214 |
-
break
|
| 215 |
-
answers_list.append(answer)
|
| 216 |
-
|
| 217 |
-
score = sum(1 for item in user_answer_list if item in answers_list)
|
| 218 |
-
|
| 219 |
-
if score > 7:
|
| 220 |
-
message = f"### Excellent! You got {score} out of 10!"
|
| 221 |
-
elif score > 5:
|
| 222 |
-
message = f"### Good! You got {score} out of 10!"
|
| 223 |
-
else:
|
| 224 |
-
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
| 225 |
-
|
| 226 |
-
return message
|
| 227 |
-
|
| 228 |
-
QUIZBOT.queue()
|
| 229 |
-
QUIZBOT.launch(debug=True)
|
| 230 |
-
|
|
|
|
| 1 |
+
# Importing libraries
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from ragatouille import RAGPretrainedModel
|
| 7 |
+
from gradio_client import Client
|
| 8 |
+
from tempfile import NamedTemporaryFile
|
| 9 |
+
from sentence_transformers import CrossEncoder
|
| 10 |
+
import numpy as np
|
| 11 |
+
from time import perf_counter
|
| 12 |
+
from sentence_transformers import CrossEncoder
|
| 13 |
+
|
| 14 |
+
#calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
|
| 15 |
+
from backend.semantic_search import table, retriever
|
| 16 |
+
|
| 17 |
+
VECTOR_COLUMN_NAME = "vector"
|
| 18 |
+
TEXT_COLUMN_NAME = "text"
|
| 19 |
+
proj_dir = Path.cwd()
|
| 20 |
+
|
| 21 |
+
# Set up logging
|
| 22 |
+
import logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Replace Mixtral client with Qwen Client
|
| 27 |
+
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
| 28 |
+
|
| 29 |
+
def system_instructions(question_difficulty, topic, documents_str):
|
| 30 |
+
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
|
| 31 |
+
|
| 32 |
+
# Ragatouille database for Colbert ie highly accurate mode
|
| 33 |
+
RAG_db = gr.State()
|
| 34 |
+
quiz_data = None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
#defining a function to convert json file to excel file
|
| 38 |
+
def json_to_excel(output_json):
|
| 39 |
+
# Initialize list for DataFrame
|
| 40 |
+
data = []
|
| 41 |
+
gr.Warning('Generating Shareable file link..', duration=30)
|
| 42 |
+
for i in range(1, 11): # Assuming there are 10 questions
|
| 43 |
+
question_key = f"Q{i}"
|
| 44 |
+
answer_key = f"A{i}"
|
| 45 |
+
|
| 46 |
+
question = output_json.get(question_key, '')
|
| 47 |
+
correct_answer_key = output_json.get(answer_key, '')
|
| 48 |
+
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
| 49 |
+
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
| 50 |
+
|
| 51 |
+
# Extract options
|
| 52 |
+
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
| 53 |
+
options = [output_json.get(key, '') for key in option_keys]
|
| 54 |
+
|
| 55 |
+
# Add data row
|
| 56 |
+
data.append([
|
| 57 |
+
question, # Question Text
|
| 58 |
+
"Multiple Choice", # Question Type
|
| 59 |
+
options[0], # Option 1
|
| 60 |
+
options[1], # Option 2
|
| 61 |
+
options[2] if len(options) > 2 else '', # Option 3
|
| 62 |
+
options[3] if len(options) > 3 else '', # Option 4
|
| 63 |
+
options[4] if len(options) > 4 else '', # Option 5
|
| 64 |
+
correct_answer, # Correct Answer
|
| 65 |
+
30, # Time in seconds
|
| 66 |
+
'' # Image Link
|
| 67 |
+
])
|
| 68 |
+
|
| 69 |
+
# Create DataFrame
|
| 70 |
+
df = pd.DataFrame(data, columns=[
|
| 71 |
+
"Question Text",
|
| 72 |
+
"Question Type",
|
| 73 |
+
"Option 1",
|
| 74 |
+
"Option 2",
|
| 75 |
+
"Option 3",
|
| 76 |
+
"Option 4",
|
| 77 |
+
"Option 5",
|
| 78 |
+
"Correct Answer",
|
| 79 |
+
"Time in seconds",
|
| 80 |
+
"Image Link"
|
| 81 |
+
])
|
| 82 |
+
|
| 83 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
| 84 |
+
df.to_excel(temp_file.name, index=False)
|
| 85 |
+
return temp_file.name
|
| 86 |
+
# Define a colorful theme
|
| 87 |
+
colorful_theme = gr.themes.Default(
|
| 88 |
+
primary_hue="cyan", # Set a bright cyan as primary color
|
| 89 |
+
secondary_hue="yellow", # Set a bright magenta as secondary color
|
| 90 |
+
neutral_hue="purple" # Optionally set a neutral color
|
| 91 |
+
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
#gradio app creation for a user interface
|
| 95 |
+
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Create a single row for the HTML and Image
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column(scale=2):
|
| 101 |
+
gr.Image(value='logo.png', height=200, width=200)
|
| 102 |
+
with gr.Column(scale=6):
|
| 103 |
+
gr.HTML("""
|
| 104 |
+
<center>
|
| 105 |
+
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT</h1>
|
| 106 |
+
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
| 107 |
+
<i>⚠️STUDENTS CAN CREATE QUIZ AND EVALUATE BY THEMSELVES ! ⚠️</i>
|
| 108 |
+
</center>
|
| 109 |
+
""")
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
| 115 |
+
|
| 116 |
+
with gr.Row():
|
| 117 |
+
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
| 118 |
+
model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
|
| 119 |
+
value='(ACCURATE) BGE reranker', label="Embeddings",
|
| 120 |
+
info="First query to ColBERT may take a little time")
|
| 121 |
+
|
| 122 |
+
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
| 123 |
+
quiz_msg = gr.Textbox()
|
| 124 |
+
|
| 125 |
+
question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
| 126 |
+
|
| 127 |
+
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
|
| 128 |
+
def generate_quiz(question_difficulty, topic, cross_encoder):
|
| 129 |
+
top_k_rank = 10
|
| 130 |
+
documents = []
|
| 131 |
+
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
| 132 |
+
|
| 133 |
+
if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
| 134 |
+
gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
|
| 135 |
+
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
| 136 |
+
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
| 137 |
+
documents_full = RAG_db.value.search(topic, k=top_k_rank)
|
| 138 |
+
documents = [item['content'] for item in documents_full]
|
| 139 |
+
|
| 140 |
+
else:
|
| 141 |
+
document_start = perf_counter()
|
| 142 |
+
query_vec = retriever.encode(topic)
|
| 143 |
+
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
| 144 |
+
|
| 145 |
+
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
| 146 |
+
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
| 147 |
+
|
| 148 |
+
query_doc_pair = [[topic, doc] for doc in documents]
|
| 149 |
+
|
| 150 |
+
# if cross_encoder == '(FAST) MiniLM-L6v2':
|
| 151 |
+
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 152 |
+
if cross_encoder == '(ACCURATE) BGE reranker':
|
| 153 |
+
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
| 154 |
+
|
| 155 |
+
cross_scores = cross_encoder1.predict(query_doc_pair)
|
| 156 |
+
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
| 157 |
+
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
| 158 |
+
|
| 159 |
+
#creating a text prompt to Qwen model combining the documents and system instruction
|
| 160 |
+
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
|
| 161 |
+
print(' Formatted Prompt : ' ,formatted_prompt)
|
| 162 |
+
try:
|
| 163 |
+
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
|
| 164 |
+
response1 = response[1][0][1]
|
| 165 |
+
|
| 166 |
+
# Extract JSON
|
| 167 |
+
start_index = response1.find('{')
|
| 168 |
+
end_index = response1.rfind('}')
|
| 169 |
+
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
|
| 170 |
+
print('Cleaned Response :',cleaned_response)
|
| 171 |
+
output_json = json.loads(cleaned_response)
|
| 172 |
+
# Assign the extracted JSON to quiz_data for use in the comparison function
|
| 173 |
+
global quiz_data
|
| 174 |
+
quiz_data = output_json
|
| 175 |
+
# Generate the Excel file
|
| 176 |
+
excel_file = json_to_excel(output_json)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
#Create a Quiz display in app
|
| 180 |
+
question_radio_list = []
|
| 181 |
+
for question_num in range(1, 11):
|
| 182 |
+
question_key = f"Q{question_num}"
|
| 183 |
+
answer_key = f"A{question_num}"
|
| 184 |
+
|
| 185 |
+
question = output_json.get(question_key)
|
| 186 |
+
answer = output_json.get(output_json.get(answer_key))
|
| 187 |
+
|
| 188 |
+
if not question or not answer:
|
| 189 |
+
continue
|
| 190 |
+
|
| 191 |
+
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
| 192 |
+
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
| 193 |
+
|
| 194 |
+
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
| 195 |
+
question_radio_list.append(radio)
|
| 196 |
+
|
| 197 |
+
return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
| 198 |
+
|
| 199 |
+
except json.JSONDecodeError as e:
|
| 200 |
+
print(f"Failed to decode JSON: {e}")
|
| 201 |
+
|
| 202 |
+
check_button = gr.Button("Check Score")
|
| 203 |
+
score_textbox = gr.Markdown()
|
| 204 |
+
|
| 205 |
+
@check_button.click(inputs=question_radios, outputs=score_textbox)
|
| 206 |
+
def compare_answers(*user_answers):
|
| 207 |
+
user_answer_list = list(user_answers)
|
| 208 |
+
answers_list = []
|
| 209 |
+
|
| 210 |
+
for question_num in range(1, 20):
|
| 211 |
+
answer_key = f"A{question_num}"
|
| 212 |
+
answer = quiz_data.get(quiz_data.get(answer_key))
|
| 213 |
+
if not answer:
|
| 214 |
+
break
|
| 215 |
+
answers_list.append(answer)
|
| 216 |
+
|
| 217 |
+
score = sum(1 for item in user_answer_list if item in answers_list)
|
| 218 |
+
|
| 219 |
+
if score > 7:
|
| 220 |
+
message = f"### Excellent! You got {score} out of 10!"
|
| 221 |
+
elif score > 5:
|
| 222 |
+
message = f"### Good! You got {score} out of 10!"
|
| 223 |
+
else:
|
| 224 |
+
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
| 225 |
+
|
| 226 |
+
return message
|
| 227 |
+
|
| 228 |
+
QUIZBOT.queue()
|
| 229 |
+
QUIZBOT.launch(debug=True)
|
| 230 |
+
|