import gradio as gr from pathlib import Path from sentence_transformers import CrossEncoder import numpy as np from time import perf_counter from pydantic import BaseModel, Field from phi.agent import Agent from phi.model.groq import Groq import os import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # API Key setup api_key = os.getenv("GROQ_API_KEY") if not api_key: gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.") logger.error("GROQ_API_KEY not found.") else: os.environ["GROQ_API_KEY"] = api_key # Pydantic Model for Quiz Structure class QuizItem(BaseModel): question: str = Field(..., description="The quiz question") choices: list[str] = Field(..., description="List of 4 multiple-choice options") correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')") class QuizOutput(BaseModel): items: list[QuizItem] = Field(..., description="List of 10 quiz items") # Initialize Agents groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True) quiz_generator = Agent( name="Quiz Generator", role="Generates structured quiz questions and answers", instructions=[ "Create 10 questions with 4 choices each based on the provided topic and documents.", "Use the specified difficulty level (easy, average, hard) to adjust question complexity.", "Ensure questions are derived only from the provided documents.", "Return the output in a structured format using the QuizOutput Pydantic model.", "Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)." ], model=Groq(id="llama3-70b-8192", api_key=api_key), response_model=QuizOutput, markdown=True ) VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" proj_dir = Path.cwd() # Calling functions from backend (assuming they exist) from backend.semantic_search import table, retriever def generate_quiz_data(question_difficulty, topic, documents_str): prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}""" try: response = quiz_generator.run(prompt) return response.content except Exception as e: logger.error(f"Failed to generate quiz: {e}") return None def retrieve_and_generate_quiz(question_difficulty, topic): gr.Warning('Generating quiz may take 1-2 minutes. Please wait.', duration=60) top_k_rank = 10 documents = [] document_start = perf_counter() query_vec = retriever.encode(topic) documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()] # Apply BGE reranker cross_encoder = CrossEncoder('BAAI/bge-reranker-base') query_doc_pair = [[topic, doc] for doc in documents] cross_scores = cross_encoder.predict(query_doc_pair) sim_scores_argsort = list(reversed(np.argsort(cross_scores))) documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] documents_str = '\n'.join(documents) quiz_data = generate_quiz_data(question_difficulty, topic, documents_str) return quiz_data def update_quiz_components(quiz_data): if not quiz_data or not quiz_data.items: return [gr.update(visible=False) for _ in range(10)] + [gr.update(value="Error: Failed to generate quiz.", visible=True)] radio_updates = [] for i, item in enumerate(quiz_data.items[:10]): choices = item.choices radio_update = gr.update(visible=True, choices=choices, label=item.question, value=None) radio_updates.append(radio_update) return radio_updates + [gr.update(value="Please select answers and click 'Check Score'.", visible=True)] # FIXED FUNCTION: Changed parameter signature to accept all arguments positionally def collect_answers_and_calculate(*all_inputs): print(f"Total inputs received: {len(all_inputs)}") # Debug print # The last input is quiz_data, the first 10 are radio values radio_values = all_inputs[:10] # First 10 inputs are radio button values quiz_data = all_inputs[10] # Last input is quiz_data print(f"Received radio_values: {radio_values}") # Debug print print(f"Received quiz_data: {quiz_data}") # Debug print # Calculate score by comparing user answers with correct answers score = 0 answered_questions = 0 for i, (user_answer, quiz_item) in enumerate(zip(radio_values, quiz_data.items[:10])): if user_answer is not None: # Only count if user answered answered_questions += 1 # Convert correct answer code (e.g., 'C3') to actual choice text correct_answer_index = int(quiz_item.correct_answer[1]) - 1 # 'C3' -> index 2 correct_answer_text = quiz_item.choices[correct_answer_index] print(f"Q{i+1}: User='{user_answer}' vs Correct='{correct_answer_text}'") # Debug if user_answer == correct_answer_text: score += 1 print(f"Calculated score: {score}/{answered_questions}") # Debug print # Create colorful HTML message if answered_questions == 0: html_message = """
Outstanding performance! 🌟
Great job! Keep it up! 💪
Well done! Room for improvement! 📚
Don't worry! Practice makes perfect! 📖✨