Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from backend.semantic_search import table, retriever
|
|
8 |
import numpy as np
|
9 |
from time import perf_counter
|
10 |
import requests
|
|
|
|
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
@@ -23,8 +25,8 @@ else:
|
|
23 |
os.environ["GROQ_API_KEY"] = api_key
|
24 |
|
25 |
# Bhashini API setup
|
26 |
-
bhashini_api_key = os.getenv("API_KEY")
|
27 |
-
bhashini_user_id = os.getenv("USER_ID")
|
28 |
|
29 |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
30 |
"""Translates text from source language to target language using the Bhashini API."""
|
@@ -42,6 +44,11 @@ def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") ->
|
|
42 |
"userID": bhashini_user_id,
|
43 |
"ulcaApiKey": bhashini_api_key
|
44 |
}
|
|
|
|
|
|
|
|
|
|
|
45 |
payload = {
|
46 |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
47 |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
@@ -56,7 +63,7 @@ def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") ->
|
|
56 |
|
57 |
print('Initial request successful, processing response...')
|
58 |
response_data = response.json()
|
59 |
-
print('Full response data:', response_data)
|
60 |
if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
61 |
print('Unexpected response structure:', response_data)
|
62 |
return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
@@ -105,6 +112,12 @@ agent = Agent(
|
|
105 |
markdown=True
|
106 |
)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# Response Generation Function
|
109 |
def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
110 |
"""Generate response using semantic search and LLM"""
|
@@ -112,7 +125,7 @@ def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
|
112 |
top_k_rank = 20
|
113 |
|
114 |
if not query.strip():
|
115 |
-
return "Please provide a valid question."
|
116 |
|
117 |
try:
|
118 |
start_time = perf_counter()
|
@@ -148,24 +161,27 @@ def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
|
148 |
response_text = response.content if hasattr(response, 'content') else str(response)
|
149 |
|
150 |
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
151 |
-
return response_text
|
152 |
|
153 |
except Exception as e:
|
154 |
logger.error(f"Error in response generation: {e}")
|
155 |
-
return f"Error generating response: {str(e)}"
|
156 |
|
157 |
def simple_chat_function(message, history, cross_encoder_choice):
|
158 |
"""Chat function with semantic search and retriever integration"""
|
159 |
if not message.strip():
|
160 |
-
return "", history
|
161 |
|
162 |
-
# Generate response
|
163 |
-
response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
164 |
|
165 |
# Add to history
|
166 |
history.append([message, response])
|
167 |
|
168 |
-
|
|
|
|
|
|
|
169 |
|
170 |
def translate_text(selected_language, history):
|
171 |
"""Translate the last response in history to the selected language."""
|
@@ -233,26 +249,30 @@ with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
|
233 |
label="Select Language for Translation"
|
234 |
)
|
235 |
translated_textbox = gr.Textbox(label="Translated Response")
|
|
|
236 |
|
237 |
# Event handlers
|
238 |
def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
239 |
if not message.strip():
|
240 |
-
return "", history, ""
|
241 |
|
242 |
-
# Generate response
|
243 |
-
response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
244 |
history.append([message, response])
|
245 |
|
246 |
# Translate response
|
247 |
translated_text = translate_text(selected_language, history)
|
248 |
|
249 |
-
|
|
|
|
|
|
|
250 |
|
251 |
-
msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
252 |
-
submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
253 |
|
254 |
clear = gr.Button("Clear Conversation")
|
255 |
-
clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])
|
256 |
|
257 |
# Example questions
|
258 |
gr.Examples(
|
@@ -268,43 +288,50 @@ with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
|
268 |
)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
|
272 |
-
#
|
273 |
-
# from
|
|
|
274 |
# import logging
|
275 |
-
# from pathlib import Path
|
276 |
-
# from time import perf_counter
|
277 |
# from sentence_transformers import CrossEncoder
|
278 |
-
# from huggingface_hub import InferenceClient
|
279 |
-
# from jinja2 import Environment, FileSystemLoader
|
280 |
-
# import numpy as np
|
281 |
-
# from os import getenv
|
282 |
-
# from backend.query_llm import generate_hf, generate_qwen
|
283 |
# from backend.semantic_search import table, retriever
|
284 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
-
# # Bhashini API
|
288 |
-
#
|
289 |
-
#
|
290 |
|
291 |
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
292 |
# """Translates text from source language to target language using the Bhashini API."""
|
293 |
-
|
294 |
# if not text.strip():
|
295 |
# print('Input text is empty. Please provide valid text for translation.')
|
296 |
-
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None
|
297 |
# else:
|
298 |
-
# print('Input text - ',text)
|
299 |
-
# print(f'Starting translation process from {from_code} to {to_code}...')
|
300 |
# print(f'Starting translation process from {from_code} to {to_code}...')
|
301 |
# gr.Warning(f'Translating to {to_code}...')
|
302 |
|
303 |
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
304 |
# headers = {
|
305 |
# "Content-Type": "application/json",
|
306 |
-
# "userID":
|
307 |
-
# "ulcaApiKey":
|
308 |
# }
|
309 |
# payload = {
|
310 |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
@@ -315,11 +342,16 @@ if __name__ == "__main__":
|
|
315 |
# response = requests.post(url, json=payload, headers=headers)
|
316 |
|
317 |
# if response.status_code != 200:
|
318 |
-
# print(f'Error in initial request: {response.status_code}')
|
319 |
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
320 |
|
321 |
# print('Initial request successful, processing response...')
|
322 |
# response_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
323 |
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
324 |
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
325 |
|
@@ -338,7 +370,7 @@ if __name__ == "__main__":
|
|
338 |
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
339 |
|
340 |
# if compute_response.status_code != 200:
|
341 |
-
# print(f'Error in translation request: {compute_response.status_code}')
|
342 |
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
343 |
|
344 |
# print('Translation request successful, processing translation...')
|
@@ -348,157 +380,391 @@ if __name__ == "__main__":
|
|
348 |
# print(f'Translation successful. Translated content: "{translated_content}"')
|
349 |
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
350 |
|
351 |
-
|
352 |
-
#
|
353 |
-
#
|
354 |
-
#
|
355 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
# proj_dir = Path(__file__).parent
|
357 |
-
|
358 |
-
# logging.basicConfig(level=logging.INFO)
|
359 |
-
# logger = logging.getLogger(__name__)
|
360 |
-
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
|
361 |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
362 |
|
363 |
-
# template = env.get_template('template.j2')
|
364 |
-
# template_html = env.get_template('template_html.j2')
|
365 |
|
366 |
-
#
|
367 |
-
# # history = [] if history is None else history
|
368 |
-
# # history = history + [(text, None)]
|
369 |
-
# # return history, gr.Textbox(value="", interactive=False)
|
370 |
-
|
371 |
-
# def bot(history, cross_encoder):
|
372 |
|
|
|
|
|
|
|
373 |
# top_rerank = 25
|
374 |
# top_k_rank = 20
|
375 |
-
# query = history[-1][0] if history else ''
|
376 |
-
# print('\nQuery: ',query )
|
377 |
-
# print('\nHistory:',history)
|
378 |
-
# if not query:
|
379 |
-
# gr.Warning("Please submit a non-empty string as a prompt")
|
380 |
-
# raise ValueError("Empty string was submitted")
|
381 |
-
|
382 |
-
# logger.warning('Retrieving documents...')
|
383 |
-
|
384 |
-
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
385 |
-
# gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
|
386 |
-
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
387 |
-
# RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
388 |
-
# documents_full = RAG_db.search(query, k=top_k_rank)
|
389 |
-
|
390 |
-
# documents = [item['content'] for item in documents_full]
|
391 |
-
# prompt = template.render(documents=documents, query=query)
|
392 |
-
# prompt_html = template_html.render(documents=documents, query=query)
|
393 |
-
|
394 |
-
# generate_fn = generate_hf
|
395 |
-
|
396 |
-
# history[-1][1] = ""
|
397 |
-
# for character in generate_fn(prompt, history[:-1]):
|
398 |
-
# history[-1][1] = character
|
399 |
-
# yield history, prompt_html
|
400 |
-
# else:
|
401 |
-
# document_start = perf_counter()
|
402 |
|
403 |
-
#
|
404 |
-
#
|
405 |
|
406 |
-
#
|
407 |
-
#
|
408 |
-
|
409 |
-
# query_doc_pair = [[query, doc] for doc in documents]
|
410 |
-
# if cross_encoder == '(FAST) MiniLM-L6v2':
|
411 |
-
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
412 |
-
# elif cross_encoder == '(ACCURATE) BGE reranker':
|
413 |
-
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
414 |
|
415 |
-
#
|
416 |
-
#
|
|
|
|
|
417 |
|
|
|
|
|
|
|
|
|
|
|
418 |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
#
|
423 |
-
#
|
424 |
|
425 |
-
#
|
426 |
-
|
427 |
-
#
|
428 |
-
#
|
429 |
-
#
|
430 |
-
#
|
431 |
-
#
|
432 |
-
#
|
433 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
-
#
|
436 |
-
#
|
437 |
-
# print('New History',new_history)
|
438 |
-
# #print('prompt html',prompt_html)# Update the last tuple with new text
|
439 |
|
440 |
-
#
|
441 |
-
|
442 |
-
#
|
443 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
-
#
|
446 |
-
#
|
447 |
-
#
|
448 |
-
#
|
449 |
-
#
|
450 |
-
#
|
451 |
-
# # history[-1][1] = character
|
452 |
-
# # yield history, prompt_html
|
453 |
|
454 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
-
#
|
|
|
457 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
# iso_language_codes = {
|
459 |
-
# "Hindi": "hi",
|
460 |
-
# "
|
461 |
-
# "
|
462 |
-
# "
|
463 |
-
# "Bodo": "brx",
|
464 |
-
# "Urdu": "ur",
|
465 |
-
# "Tamil": "ta",
|
466 |
-
# "Kashmiri": "ks",
|
467 |
-
# "Assamese": "as",
|
468 |
-
# "Bengali": "bn",
|
469 |
-
# "Marathi": "mr",
|
470 |
-
# "Sindhi": "sd",
|
471 |
-
# "Maithili": "mai",
|
472 |
-
# "Punjabi": "pa",
|
473 |
-
# "Malayalam": "ml",
|
474 |
-
# "Manipuri": "mni",
|
475 |
-
# "Telugu": "te",
|
476 |
-
# "Sanskrit": "sa",
|
477 |
-
# "Nepali": "ne",
|
478 |
-
# "Santali": "sat",
|
479 |
-
# "Gujarati": "gu",
|
480 |
-
# "Odia": "or"
|
481 |
# }
|
482 |
|
483 |
# to_code = iso_language_codes[selected_language]
|
484 |
-
# response_text = history[-1][1] if history else ''
|
485 |
-
# print('response_text for translation',response_text)
|
486 |
# translation = bhashini_translate(response_text, to_code=to_code)
|
487 |
-
# return translation
|
488 |
-
|
489 |
|
490 |
-
# # Gradio
|
491 |
-
# with gr.Blocks(theme='gradio/soft') as
|
492 |
-
#
|
493 |
# with gr.Row():
|
494 |
# with gr.Column(scale=10):
|
495 |
-
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR
|
496 |
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
497 |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
498 |
-
|
499 |
# with gr.Column(scale=3):
|
500 |
-
#
|
|
|
|
|
|
|
501 |
|
|
|
502 |
# chatbot = gr.Chatbot(
|
503 |
# [],
|
504 |
# elem_id="chatbot",
|
@@ -510,57 +776,361 @@ if __name__ == "__main__":
|
|
510 |
# )
|
511 |
|
512 |
# with gr.Row():
|
513 |
-
#
|
514 |
# scale=3,
|
515 |
# show_label=False,
|
516 |
# placeholder="Enter text and press enter",
|
517 |
# container=False,
|
518 |
# )
|
519 |
-
#
|
520 |
-
|
521 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
# language_dropdown = gr.Dropdown(
|
523 |
# choices=[
|
524 |
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
525 |
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
526 |
# "Gujarati", "Odia"
|
527 |
# ],
|
528 |
-
# value="Hindi",
|
529 |
# label="Select Language for Translation"
|
530 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
|
532 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
-
#
|
535 |
-
#
|
536 |
-
#
|
537 |
-
#
|
538 |
-
#
|
539 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
-
# # Call bot function
|
542 |
-
# # bot_output = list(bot(history, cross_encoder))
|
543 |
-
# bot_output = next(bot(history, cross_encoder))
|
544 |
-
# print('bot_output',bot_output)
|
545 |
-
# #history, prompt_html = bot_output[-1]
|
546 |
-
# history, prompt_html = bot_output
|
547 |
-
# print('History',history)
|
548 |
-
# # Update the history state
|
549 |
-
# history_state[:] = history
|
550 |
|
551 |
-
# # Translate text
|
552 |
-
# translated_text = translate_text(language_dropdown, history)
|
553 |
-
# return history, prompt_html, translated_text
|
554 |
|
555 |
-
# txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
|
556 |
-
# txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
|
557 |
|
558 |
-
# examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
|
559 |
-
# 'EXPLAIN GOLGI APPARATUS']
|
560 |
|
561 |
-
# gr.Examples(examples, txt)
|
562 |
|
563 |
|
564 |
-
# # Launch the Gradio application
|
565 |
-
# CHATBOT.launch(share=True,debug=True)
|
566 |
|
|
|
8 |
import numpy as np
|
9 |
from time import perf_counter
|
10 |
import requests
|
11 |
+
from jinja2 import Environment, FileSystemLoader
|
12 |
+
from pathlib import Path
|
13 |
|
14 |
# Set up logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
|
|
25 |
os.environ["GROQ_API_KEY"] = api_key
|
26 |
|
27 |
# Bhashini API setup
|
28 |
+
bhashini_api_key = os.getenv("API_KEY", "").strip()
|
29 |
+
bhashini_user_id = os.getenv("USER_ID", "").strip()
|
30 |
|
31 |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
32 |
"""Translates text from source language to target language using the Bhashini API."""
|
|
|
44 |
"userID": bhashini_user_id,
|
45 |
"ulcaApiKey": bhashini_api_key
|
46 |
}
|
47 |
+
for key, value in headers.items():
|
48 |
+
if not isinstance(value, str) or '\n' in value or '\r' in value:
|
49 |
+
print(f"Invalid header value for {key}: {value}")
|
50 |
+
return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}
|
51 |
+
|
52 |
payload = {
|
53 |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
54 |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
|
|
63 |
|
64 |
print('Initial request successful, processing response...')
|
65 |
response_data = response.json()
|
66 |
+
print('Full response data:', response_data)
|
67 |
if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
68 |
print('Unexpected response structure:', response_data)
|
69 |
return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
|
|
112 |
markdown=True
|
113 |
)
|
114 |
|
115 |
+
# Set up Jinja2 environment
|
116 |
+
proj_dir = Path(__file__).parent
|
117 |
+
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
118 |
+
template = env.get_template('template.j2') # For document context
|
119 |
+
template_html = env.get_template('template_html.j2') # For HTML output
|
120 |
+
|
121 |
# Response Generation Function
|
122 |
def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
123 |
"""Generate response using semantic search and LLM"""
|
|
|
125 |
top_k_rank = 20
|
126 |
|
127 |
if not query.strip():
|
128 |
+
return "Please provide a valid question.", []
|
129 |
|
130 |
try:
|
131 |
start_time = perf_counter()
|
|
|
161 |
response_text = response.content if hasattr(response, 'content') else str(response)
|
162 |
|
163 |
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
164 |
+
return response_text, documents # Return documents for template
|
165 |
|
166 |
except Exception as e:
|
167 |
logger.error(f"Error in response generation: {e}")
|
168 |
+
return f"Error generating response: {str(e)}", []
|
169 |
|
170 |
def simple_chat_function(message, history, cross_encoder_choice):
|
171 |
"""Chat function with semantic search and retriever integration"""
|
172 |
if not message.strip():
|
173 |
+
return "", history, ""
|
174 |
|
175 |
+
# Generate response and get documents
|
176 |
+
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
177 |
|
178 |
# Add to history
|
179 |
history.append([message, response])
|
180 |
|
181 |
+
# Render template with documents and query
|
182 |
+
prompt_html = template_html.render(documents=documents, query=message)
|
183 |
+
|
184 |
+
return "", history, prompt_html
|
185 |
|
186 |
def translate_text(selected_language, history):
|
187 |
"""Translate the last response in history to the selected language."""
|
|
|
249 |
label="Select Language for Translation"
|
250 |
)
|
251 |
translated_textbox = gr.Textbox(label="Translated Response")
|
252 |
+
prompt_html = gr.HTML() # Add HTML component for the template
|
253 |
|
254 |
# Event handlers
|
255 |
def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
256 |
if not message.strip():
|
257 |
+
return "", history, "", ""
|
258 |
|
259 |
+
# Generate response and get documents
|
260 |
+
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
261 |
history.append([message, response])
|
262 |
|
263 |
# Translate response
|
264 |
translated_text = translate_text(selected_language, history)
|
265 |
|
266 |
+
# Render template with documents and query
|
267 |
+
prompt_html_content = template_html.render(documents=documents, query=message)
|
268 |
+
|
269 |
+
return "", history, translated_text, prompt_html_content
|
270 |
|
271 |
+
msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])
|
272 |
+
submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])
|
273 |
|
274 |
clear = gr.Button("Clear Conversation")
|
275 |
+
clear.click(lambda: ([], "", "", ""), outputs=[chatbot, msg, translated_textbox, prompt_html])
|
276 |
|
277 |
# Example questions
|
278 |
gr.Examples(
|
|
|
288 |
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
|
292 |
+
# from phi.agent import Agent
|
293 |
+
# from phi.model.groq import Groq
|
294 |
+
# import os
|
295 |
# import logging
|
|
|
|
|
296 |
# from sentence_transformers import CrossEncoder
|
|
|
|
|
|
|
|
|
|
|
297 |
# from backend.semantic_search import table, retriever
|
298 |
+
# import numpy as np
|
299 |
+
# from time import perf_counter
|
300 |
+
# import requests
|
301 |
+
# from jinja2 import Environment, FileSystemLoader
|
302 |
+
|
303 |
+
# # Set up logging
|
304 |
+
# logging.basicConfig(level=logging.INFO)
|
305 |
+
# logger = logging.getLogger(__name__)
|
306 |
|
307 |
+
# # API Key setup
|
308 |
+
# api_key = os.getenv("GROQ_API_KEY")
|
309 |
+
# if not api_key:
|
310 |
+
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
311 |
+
# logger.error("GROQ_API_KEY not found.")
|
312 |
+
# api_key = "" # Fallback to empty string, but this will fail without a key
|
313 |
+
# else:
|
314 |
+
# os.environ["GROQ_API_KEY"] = api_key
|
315 |
|
316 |
+
# # Bhashini API setup
|
317 |
+
# bhashini_api_key = os.getenv("API_KEY")
|
318 |
+
# bhashini_user_id = os.getenv("USER_ID")
|
319 |
|
320 |
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
321 |
# """Translates text from source language to target language using the Bhashini API."""
|
|
|
322 |
# if not text.strip():
|
323 |
# print('Input text is empty. Please provide valid text for translation.')
|
324 |
+
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
|
325 |
# else:
|
326 |
+
# print('Input text - ', text)
|
|
|
327 |
# print(f'Starting translation process from {from_code} to {to_code}...')
|
328 |
# gr.Warning(f'Translating to {to_code}...')
|
329 |
|
330 |
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
331 |
# headers = {
|
332 |
# "Content-Type": "application/json",
|
333 |
+
# "userID": bhashini_user_id,
|
334 |
+
# "ulcaApiKey": bhashini_api_key
|
335 |
# }
|
336 |
# payload = {
|
337 |
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
|
|
342 |
# response = requests.post(url, json=payload, headers=headers)
|
343 |
|
344 |
# if response.status_code != 200:
|
345 |
+
# print(f'Error in initial request: {response.status_code}, Response: {response.text}')
|
346 |
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
347 |
|
348 |
# print('Initial request successful, processing response...')
|
349 |
# response_data = response.json()
|
350 |
+
# print('Full response data:', response_data) # Debug the full response
|
351 |
+
# if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
352 |
+
# print('Unexpected response structure:', response_data)
|
353 |
+
# return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
354 |
+
|
355 |
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
356 |
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
357 |
|
|
|
370 |
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
371 |
|
372 |
# if compute_response.status_code != 200:
|
373 |
+
# print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
|
374 |
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
375 |
|
376 |
# print('Translation request successful, processing translation...')
|
|
|
380 |
# print(f'Translation successful. Translated content: "{translated_content}"')
|
381 |
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
382 |
|
383 |
+
# # Initialize PhiData Agent
|
384 |
+
# agent = Agent(
|
385 |
+
# name="Science Education Assistant",
|
386 |
+
# role="You are a helpful science tutor for 10th-grade students",
|
387 |
+
# instructions=[
|
388 |
+
# "You are an expert science teacher specializing in 10th-grade curriculum.",
|
389 |
+
# "Provide clear, accurate, and age-appropriate explanations.",
|
390 |
+
# "Use simple language and examples that students can understand.",
|
391 |
+
# "Focus on concepts from physics, chemistry, and biology.",
|
392 |
+
# "Structure responses with headings and bullet points when helpful.",
|
393 |
+
# "Encourage learning and curiosity."
|
394 |
+
# ],
|
395 |
+
# model=Groq(id="llama3-70b-8192", api_key=api_key),
|
396 |
+
# markdown=True
|
397 |
+
# )
|
398 |
+
# # Set up Jinja2 environment
|
399 |
# proj_dir = Path(__file__).parent
|
|
|
|
|
|
|
|
|
400 |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
401 |
|
|
|
|
|
402 |
|
403 |
+
# template_html = env.get_template('template_html.j2')
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
+
# # Response Generation Function
|
406 |
+
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
407 |
+
# """Generate response using semantic search and LLM"""
|
408 |
# top_rerank = 25
|
409 |
# top_k_rank = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
+
# if not query.strip():
|
412 |
+
# return "Please provide a valid question."
|
413 |
|
414 |
+
# try:
|
415 |
+
# start_time = perf_counter()
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
+
# # Encode query and search documents
|
418 |
+
# query_vec = retriever.encode(query)
|
419 |
+
# documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
|
420 |
+
# documents = [doc["text"] for doc in documents]
|
421 |
|
422 |
+
# # Re-rank documents using cross-encoder
|
423 |
+
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
424 |
+
# query_doc_pair = [[query, doc] for doc in documents]
|
425 |
+
# cross_scores = cross_encoder_model.predict(query_doc_pair)
|
426 |
+
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
427 |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
428 |
+
|
429 |
+
# # Create context from top documents
|
430 |
+
# context = "\n\n".join(documents[:10]) if documents else ""
|
431 |
+
# context = f"Context information from educational materials:\n{context}\n\n"
|
432 |
+
|
433 |
+
# # Add conversation history for context
|
434 |
+
# history_context = ""
|
435 |
+
# if history and len(history) > 0:
|
436 |
+
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
|
437 |
+
# if user_msg and bot_msg:
|
438 |
+
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
|
439 |
+
|
440 |
+
# # Create full prompt
|
441 |
+
# full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
|
442 |
+
|
443 |
+
# # Generate response
|
444 |
+
# response = agent.run(full_prompt)
|
445 |
+
# response_text = response.content if hasattr(response, 'content') else str(response)
|
446 |
+
|
447 |
+
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
448 |
+
# return response_text
|
449 |
|
450 |
+
# except Exception as e:
|
451 |
+
# logger.error(f"Error in response generation: {e}")
|
452 |
+
# return f"Error generating response: {str(e)}"
|
453 |
+
|
454 |
+
# def simple_chat_function(message, history, cross_encoder_choice):
|
455 |
+
# """Chat function with semantic search and retriever integration"""
|
456 |
+
# if not message.strip():
|
457 |
+
# return "", history
|
458 |
+
|
459 |
+
# # Generate response using the semantic search function
|
460 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
461 |
|
462 |
+
# # Add to history
|
463 |
+
# history.append([message, response])
|
464 |
|
465 |
+
# return "", history
|
466 |
+
|
467 |
+
# def translate_text(selected_language, history):
|
468 |
+
# """Translate the last response in history to the selected language."""
|
469 |
+
# iso_language_codes = {
|
470 |
+
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
|
471 |
+
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
|
472 |
+
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
|
473 |
+
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
|
474 |
+
# }
|
475 |
+
|
476 |
+
# to_code = iso_language_codes[selected_language]
|
477 |
+
# response_text = history[-1][1] if history and history[-1][1] else ''
|
478 |
+
# print('response_text for translation', response_text)
|
479 |
+
# translation = bhashini_translate(response_text, to_code=to_code)
|
480 |
+
# return translation.get('translated_content', 'Translation failed.')
|
481 |
+
|
482 |
+
# # Gradio Interface with layout template
|
483 |
+
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
484 |
+
# # Header section
|
485 |
+
# with gr.Row():
|
486 |
+
# with gr.Column(scale=10):
|
487 |
+
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
|
488 |
+
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
489 |
+
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
490 |
+
# with gr.Column(scale=3):
|
491 |
+
# try:
|
492 |
+
# gr.Image(value='logo.png', height=200, width=200)
|
493 |
+
# except:
|
494 |
+
# gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")
|
495 |
+
|
496 |
+
# # Chat and input components
|
497 |
+
# chatbot = gr.Chatbot(
|
498 |
+
# [],
|
499 |
+
# elem_id="chatbot",
|
500 |
+
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
501 |
+
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
502 |
+
# bubble_full_width=False,
|
503 |
+
# show_copy_button=True,
|
504 |
+
# show_share_button=True,
|
505 |
+
# )
|
506 |
+
|
507 |
+
# with gr.Row():
|
508 |
+
# msg = gr.Textbox(
|
509 |
+
# scale=3,
|
510 |
+
# show_label=False,
|
511 |
+
# placeholder="Enter text and press enter",
|
512 |
+
# container=False,
|
513 |
+
# )
|
514 |
+
# submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")
|
515 |
+
|
516 |
+
# # Additional controls
|
517 |
+
# cross_encoder = gr.Radio(
|
518 |
+
# choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
|
519 |
+
# value='(ACCURATE) BGE reranker',
|
520 |
+
# label="Embeddings Model",
|
521 |
+
# info="Select the model for document ranking"
|
522 |
+
# )
|
523 |
+
# language_dropdown = gr.Dropdown(
|
524 |
+
# choices=[
|
525 |
+
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
526 |
+
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
527 |
+
# "Gujarati", "Odia"
|
528 |
+
# ],
|
529 |
+
# value="Hindi",
|
530 |
+
# label="Select Language for Translation"
|
531 |
+
# )
|
532 |
+
# translated_textbox = gr.Textbox(label="Translated Response")
|
533 |
+
|
534 |
+
# # Event handlers
|
535 |
+
# def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
536 |
+
# if not message.strip():
|
537 |
+
# return "", history, ""
|
538 |
+
|
539 |
+
# # Generate response
|
540 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
541 |
+
# history.append([message, response])
|
542 |
|
543 |
+
# # Translate response
|
544 |
+
# translated_text = translate_text(selected_language, history)
|
|
|
|
|
545 |
|
546 |
+
# return "", history, translated_text
|
547 |
+
|
548 |
+
# msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
549 |
+
# submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
550 |
+
|
551 |
+
# clear = gr.Button("Clear Conversation")
|
552 |
+
# clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])
|
553 |
+
|
554 |
+
# # Example questions
|
555 |
+
# gr.Examples(
|
556 |
+
# examples=[
|
557 |
+
# 'What is the difference between metals and non-metals?',
|
558 |
+
# 'What is an ionic bond?',
|
559 |
+
# 'Explain asexual reproduction',
|
560 |
+
# 'What is photosynthesis?',
|
561 |
+
# 'Explain Newton\'s laws of motion'
|
562 |
+
# ],
|
563 |
+
# inputs=msg,
|
564 |
+
# label="Try these example questions:"
|
565 |
+
# )
|
566 |
+
|
567 |
+
# if __name__ == "__main__":
|
568 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
|
569 |
+
# import gradio as gr
|
570 |
+
# from phi.agent import Agent
|
571 |
+
# from phi.model.groq import Groq
|
572 |
+
# import os
|
573 |
+
# import logging
|
574 |
+
# from sentence_transformers import CrossEncoder
|
575 |
+
# from backend.semantic_search import table, retriever
|
576 |
+
# import numpy as np
|
577 |
+
# from time import perf_counter
|
578 |
+
# import requests
|
579 |
+
|
580 |
+
# # Set up logging
|
581 |
+
# logging.basicConfig(level=logging.INFO)
|
582 |
+
# logger = logging.getLogger(__name__)
|
583 |
+
|
584 |
+
# # API Key setup
|
585 |
+
# api_key = os.getenv("GROQ_API_KEY")
|
586 |
+
# if not api_key:
|
587 |
+
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
588 |
+
# logger.error("GROQ_API_KEY not found.")
|
589 |
+
# api_key = "" # Fallback to empty string, but this will fail without a key
|
590 |
+
# else:
|
591 |
+
# os.environ["GROQ_API_KEY"] = api_key
|
592 |
+
|
593 |
+
# # Bhashini API setup
|
594 |
+
# bhashini_api_key = os.getenv("API_KEY")
|
595 |
+
# bhashini_user_id = os.getenv("USER_ID")
|
596 |
+
|
597 |
+
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
598 |
+
# """Translates text from source language to target language using the Bhashini API."""
|
599 |
+
# if not text.strip():
|
600 |
+
# print('Input text is empty. Please provide valid text for translation.')
|
601 |
+
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
|
602 |
+
# else:
|
603 |
+
# print('Input text - ', text)
|
604 |
+
# print(f'Starting translation process from {from_code} to {to_code}...')
|
605 |
+
# gr.Warning(f'Translating to {to_code}...')
|
606 |
+
|
607 |
+
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
608 |
+
# headers = {
|
609 |
+
# "Content-Type": "application/json",
|
610 |
+
# "userID": bhashini_user_id,
|
611 |
+
# "ulcaApiKey": bhashini_api_key
|
612 |
+
# }
|
613 |
+
# payload = {
|
614 |
+
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
615 |
+
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
616 |
+
# }
|
617 |
+
|
618 |
+
# print('Sending initial request to get the pipeline...')
|
619 |
+
# response = requests.post(url, json=payload, headers=headers)
|
620 |
+
|
621 |
+
# if response.status_code != 200:
|
622 |
+
# print(f'Error in initial request: {response.status_code}, Response: {response.text}')
|
623 |
+
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
624 |
|
625 |
+
# print('Initial request successful, processing response...')
|
626 |
+
# response_data = response.json()
|
627 |
+
# print('Full response data:', response_data) # Debug the full response
|
628 |
+
# if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
629 |
+
# print('Unexpected response structure:', response_data)
|
630 |
+
# return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
|
|
|
|
631 |
|
632 |
+
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
633 |
+
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
634 |
+
|
635 |
+
# print(f'Service ID: {service_id}, Callback URL: {callback_url}')
|
636 |
+
|
637 |
+
# headers2 = {
|
638 |
+
# "Content-Type": "application/json",
|
639 |
+
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
|
640 |
+
# }
|
641 |
+
# compute_payload = {
|
642 |
+
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
|
643 |
+
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
|
644 |
+
# }
|
645 |
|
646 |
+
# print(f'Sending translation request with text: "{text}"')
|
647 |
+
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
648 |
|
649 |
+
# if compute_response.status_code != 200:
|
650 |
+
# print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
|
651 |
+
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
652 |
+
|
653 |
+
# print('Translation request successful, processing translation...')
|
654 |
+
# compute_response_data = compute_response.json()
|
655 |
+
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
|
656 |
+
|
657 |
+
# print(f'Translation successful. Translated content: "{translated_content}"')
|
658 |
+
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
659 |
+
|
660 |
+
# # Initialize PhiData Agent
|
661 |
+
# agent = Agent(
|
662 |
+
# name="Science Education Assistant",
|
663 |
+
# role="You are a helpful science tutor for 10th-grade students",
|
664 |
+
# instructions=[
|
665 |
+
# "You are an expert science teacher specializing in 10th-grade curriculum.",
|
666 |
+
# "Provide clear, accurate, and age-appropriate explanations.",
|
667 |
+
# "Use simple language and examples that students can understand.",
|
668 |
+
# "Focus on concepts from physics, chemistry, and biology.",
|
669 |
+
# "Structure responses with headings and bullet points when helpful.",
|
670 |
+
# "Encourage learning and curiosity."
|
671 |
+
# ],
|
672 |
+
# model=Groq(id="llama3-70b-8192", api_key=api_key),
|
673 |
+
# markdown=True
|
674 |
+
# )
|
675 |
+
|
676 |
+
# # Response Generation Function
|
677 |
+
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
678 |
+
# """Generate response using semantic search and LLM"""
|
679 |
+
# top_rerank = 25
|
680 |
+
# top_k_rank = 20
|
681 |
+
|
682 |
+
# if not query.strip():
|
683 |
+
# return "Please provide a valid question."
|
684 |
+
|
685 |
+
# try:
|
686 |
+
# start_time = perf_counter()
|
687 |
+
|
688 |
+
# # Encode query and search documents
|
689 |
+
# query_vec = retriever.encode(query)
|
690 |
+
# documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
|
691 |
+
# documents = [doc["text"] for doc in documents]
|
692 |
+
|
693 |
+
# # Re-rank documents using cross-encoder
|
694 |
+
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
695 |
+
# query_doc_pair = [[query, doc] for doc in documents]
|
696 |
+
# cross_scores = cross_encoder_model.predict(query_doc_pair)
|
697 |
+
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
698 |
+
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
699 |
+
|
700 |
+
# # Create context from top documents
|
701 |
+
# context = "\n\n".join(documents[:10]) if documents else ""
|
702 |
+
# context = f"Context information from educational materials:\n{context}\n\n"
|
703 |
+
|
704 |
+
# # Add conversation history for context
|
705 |
+
# history_context = ""
|
706 |
+
# if history and len(history) > 0:
|
707 |
+
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
|
708 |
+
# if user_msg and bot_msg:
|
709 |
+
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
|
710 |
+
|
711 |
+
# # Create full prompt
|
712 |
+
# full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
|
713 |
+
|
714 |
+
# # Generate response
|
715 |
+
# response = agent.run(full_prompt)
|
716 |
+
# response_text = response.content if hasattr(response, 'content') else str(response)
|
717 |
+
|
718 |
+
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
719 |
+
# return response_text
|
720 |
+
|
721 |
+
# except Exception as e:
|
722 |
+
# logger.error(f"Error in response generation: {e}")
|
723 |
+
# return f"Error generating response: {str(e)}"
|
724 |
+
|
725 |
+
# def simple_chat_function(message, history, cross_encoder_choice):
|
726 |
+
# """Chat function with semantic search and retriever integration"""
|
727 |
+
# if not message.strip():
|
728 |
+
# return "", history
|
729 |
+
|
730 |
+
# # Generate response using the semantic search function
|
731 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
732 |
+
|
733 |
+
# # Add to history
|
734 |
+
# history.append([message, response])
|
735 |
+
|
736 |
+
# return "", history
|
737 |
+
|
738 |
+
# def translate_text(selected_language, history):
|
739 |
+
# """Translate the last response in history to the selected language."""
|
740 |
# iso_language_codes = {
|
741 |
+
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
|
742 |
+
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
|
743 |
+
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
|
744 |
+
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
# }
|
746 |
|
747 |
# to_code = iso_language_codes[selected_language]
|
748 |
+
# response_text = history[-1][1] if history and history[-1][1] else ''
|
749 |
+
# print('response_text for translation', response_text)
|
750 |
# translation = bhashini_translate(response_text, to_code=to_code)
|
751 |
+
# return translation.get('translated_content', 'Translation failed.')
|
|
|
752 |
|
753 |
+
# # Gradio Interface with layout template
|
754 |
+
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
755 |
+
# # Header section
|
756 |
# with gr.Row():
|
757 |
# with gr.Column(scale=10):
|
758 |
+
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
|
759 |
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
760 |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
|
|
761 |
# with gr.Column(scale=3):
|
762 |
+
# try:
|
763 |
+
# gr.Image(value='logo.png', height=200, width=200)
|
764 |
+
# except:
|
765 |
+
# gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")
|
766 |
|
767 |
+
# # Chat and input components
|
768 |
# chatbot = gr.Chatbot(
|
769 |
# [],
|
770 |
# elem_id="chatbot",
|
|
|
776 |
# )
|
777 |
|
778 |
# with gr.Row():
|
779 |
+
# msg = gr.Textbox(
|
780 |
# scale=3,
|
781 |
# show_label=False,
|
782 |
# placeholder="Enter text and press enter",
|
783 |
# container=False,
|
784 |
# )
|
785 |
+
# submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")
|
786 |
+
|
787 |
+
# # Additional controls
|
788 |
+
# cross_encoder = gr.Radio(
|
789 |
+
# choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
|
790 |
+
# value='(ACCURATE) BGE reranker',
|
791 |
+
# label="Embeddings Model",
|
792 |
+
# info="Select the model for document ranking"
|
793 |
+
# )
|
794 |
# language_dropdown = gr.Dropdown(
|
795 |
# choices=[
|
796 |
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
797 |
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
798 |
# "Gujarati", "Odia"
|
799 |
# ],
|
800 |
+
# value="Hindi",
|
801 |
# label="Select Language for Translation"
|
802 |
# )
|
803 |
+
# translated_textbox = gr.Textbox(label="Translated Response")
|
804 |
+
|
805 |
+
# # Event handlers
|
806 |
+
# def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
807 |
+
# if not message.strip():
|
808 |
+
# return "", history, ""
|
809 |
+
|
810 |
+
# # Generate response
|
811 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
812 |
+
# history.append([message, response])
|
813 |
+
|
814 |
+
# # Translate response
|
815 |
+
# translated_text = translate_text(selected_language, history)
|
816 |
+
|
817 |
+
# return "", history, translated_text
|
818 |
+
|
819 |
+
# msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
820 |
+
# submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
821 |
+
|
822 |
+
# clear = gr.Button("Clear Conversation")
|
823 |
+
# clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])
|
824 |
+
|
825 |
+
# # Example questions
|
826 |
+
# gr.Examples(
|
827 |
+
# examples=[
|
828 |
+
# 'What is the difference between metals and non-metals?',
|
829 |
+
# 'What is an ionic bond?',
|
830 |
+
# 'Explain asexual reproduction',
|
831 |
+
# 'What is photosynthesis?',
|
832 |
+
# 'Explain Newton\'s laws of motion'
|
833 |
+
# ],
|
834 |
+
# inputs=msg,
|
835 |
+
# label="Try these example questions:"
|
836 |
+
# )
|
837 |
+
|
838 |
+
# if __name__ == "__main__":
|
839 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)
|
840 |
+
|
841 |
+
# 1f# import gradio as gr# import requests
|
842 |
+
# # import gradio as gr
|
843 |
+
# # from ragatouille import RAGPretrainedModel
|
844 |
+
# # import logging
|
845 |
+
# # from pathlib import Path
|
846 |
+
# # from time import perf_counter
|
847 |
+
# # from sentence_transformers import CrossEncoder
|
848 |
+
# # from huggingface_hub import InferenceClient
|
849 |
+
# # from jinja2 import Environment, FileSystemLoader
|
850 |
+
# # import numpy as np
|
851 |
+
# # from os import getenv
|
852 |
+
# # from backend.query_llm import generate_hf, generate_qwen
|
853 |
+
# # from backend.semantic_search import table, retriever
|
854 |
+
# # from huggingface_hub import InferenceClient
|
855 |
+
|
856 |
+
|
857 |
+
# # # Bhashini API translation function
|
858 |
+
# # api_key = getenv('API_KEY')
|
859 |
+
# # user_id = getenv('USER_ID')
|
860 |
+
|
861 |
+
# # def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
862 |
+
# # """Translates text from source language to target language using the Bhashini API."""
|
863 |
|
864 |
+
# # if not text.strip():
|
865 |
+
# # print('Input text is empty. Please provide valid text for translation.')
|
866 |
+
# # return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
|
867 |
+
# # else:
|
868 |
+
# # print('Input text - ',text)
|
869 |
+
# # print(f'Starting translation process from {from_code} to {to_code}...')
|
870 |
+
# # print(f'Starting translation process from {from_code} to {to_code}...')
|
871 |
+
# # gr.Warning(f'Translating to {to_code}...')
|
872 |
|
873 |
+
# # url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
874 |
+
# # headers = {
|
875 |
+
# # "Content-Type": "application/json",
|
876 |
+
# # "userID": user_id,
|
877 |
+
# # "ulcaApiKey": api_key
|
878 |
+
# # }
|
879 |
+
# # payload = {
|
880 |
+
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
881 |
+
# # "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
882 |
+
# # }
|
883 |
+
|
884 |
+
# # print('Sending initial request to get the pipeline...')
|
885 |
+
# # response = requests.post(url, json=payload, headers=headers)
|
886 |
+
|
887 |
+
# # if response.status_code != 200:
|
888 |
+
# # print(f'Error in initial request: {response.status_code}')
|
889 |
+
# # return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
890 |
+
|
891 |
+
# # print('Initial request successful, processing response...')
|
892 |
+
# # response_data = response.json()
|
893 |
+
# # service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
894 |
+
# # callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
895 |
+
|
896 |
+
# # print(f'Service ID: {service_id}, Callback URL: {callback_url}')
|
897 |
+
|
898 |
+
# # headers2 = {
|
899 |
+
# # "Content-Type": "application/json",
|
900 |
+
# # response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
|
901 |
+
# # }
|
902 |
+
# # compute_payload = {
|
903 |
+
# # "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
|
904 |
+
# # "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
|
905 |
+
# # }
|
906 |
+
|
907 |
+
# # print(f'Sending translation request with text: "{text}"')
|
908 |
+
# # compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
909 |
+
|
910 |
+
# # if compute_response.status_code != 200:
|
911 |
+
# # print(f'Error in translation request: {compute_response.status_code}')
|
912 |
+
# # return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
913 |
+
|
914 |
+
# # print('Translation request successful, processing translation...')
|
915 |
+
# # compute_response_data = compute_response.json()
|
916 |
+
# # translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
|
917 |
+
|
918 |
+
# # print(f'Translation successful. Translated content: "{translated_content}"')
|
919 |
+
# # return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
920 |
+
|
921 |
+
|
922 |
+
# # # Existing chatbot functions
|
923 |
+
# # VECTOR_COLUMN_NAME = "vector"
|
924 |
+
# # TEXT_COLUMN_NAME = "text"
|
925 |
+
# # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
926 |
+
# # proj_dir = Path(__file__).parent
|
927 |
+
|
928 |
+
# # logging.basicConfig(level=logging.INFO)
|
929 |
+
# # logger = logging.getLogger(__name__)
|
930 |
+
# # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
|
931 |
+
# # env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
932 |
+
|
933 |
+
# # template = env.get_template('template.j2')
|
934 |
+
# # template_html = env.get_template('template_html.j2')
|
935 |
+
|
936 |
+
# # # def add_text(history, text):
|
937 |
+
# # # history = [] if history is None else history
|
938 |
+
# # # history = history + [(text, None)]
|
939 |
+
# # # return history, gr.Textbox(value="", interactive=False)
|
940 |
+
|
941 |
+
# # def bot(history, cross_encoder):
|
942 |
+
|
943 |
+
# # top_rerank = 25
|
944 |
+
# # top_k_rank = 20
|
945 |
+
# # query = history[-1][0] if history else ''
|
946 |
+
# # print('\nQuery: ',query )
|
947 |
+
# # print('\nHistory:',history)
|
948 |
+
# # if not query:
|
949 |
+
# # gr.Warning("Please submit a non-empty string as a prompt")
|
950 |
+
# # raise ValueError("Empty string was submitted")
|
951 |
+
|
952 |
+
# # logger.warning('Retrieving documents...')
|
953 |
+
|
954 |
+
# # if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
955 |
+
# # gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
|
956 |
+
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
957 |
+
# # RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
958 |
+
# # documents_full = RAG_db.search(query, k=top_k_rank)
|
959 |
+
|
960 |
+
# # documents = [item['content'] for item in documents_full]
|
961 |
+
# # prompt = template.render(documents=documents, query=query)
|
962 |
+
# # prompt_html = template_html.render(documents=documents, query=query)
|
963 |
+
|
964 |
+
# # generate_fn = generate_hf
|
965 |
+
|
966 |
+
# # history[-1][1] = ""
|
967 |
+
# # for character in generate_fn(prompt, history[:-1]):
|
968 |
+
# # history[-1][1] = character
|
969 |
+
# # yield history, prompt_html
|
970 |
+
# # else:
|
971 |
+
# # document_start = perf_counter()
|
972 |
+
|
973 |
+
# # query_vec = retriever.encode(query)
|
974 |
+
# # doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
975 |
+
|
976 |
+
# # documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
|
977 |
+
# # documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
978 |
+
|
979 |
+
# # query_doc_pair = [[query, doc] for doc in documents]
|
980 |
+
# # if cross_encoder == '(FAST) MiniLM-L6v2':
|
981 |
+
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
982 |
+
# # elif cross_encoder == '(ACCURATE) BGE reranker':
|
983 |
+
# # cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
984 |
+
|
985 |
+
# # cross_scores = cross_encoder1.predict(query_doc_pair)
|
986 |
+
# # sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
987 |
+
|
988 |
+
# # documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
989 |
+
|
990 |
+
# # document_time = perf_counter() - document_start
|
991 |
+
|
992 |
+
# # prompt = template.render(documents=documents, query=query)
|
993 |
+
# # prompt_html = template_html.render(documents=documents, query=query)
|
994 |
+
|
995 |
+
# # #generate_fn = generate_hf
|
996 |
+
# # generate_fn=generate_qwen
|
997 |
+
# # # Create a new history entry instead of modifying the tuple directly
|
998 |
+
# # new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
|
999 |
+
# # output=''
|
1000 |
+
# # # for character in generate_fn(prompt, history[:-1]):
|
1001 |
+
# # # #new_history[-1] = (query, character)
|
1002 |
+
# # # output+=character
|
1003 |
+
# # output=generate_fn(prompt, history[:-1])
|
1004 |
+
|
1005 |
+
# # print('Output:',output)
|
1006 |
+
# # new_history[-1] = (prompt, output) #query replaced with prompt
|
1007 |
+
# # print('New History',new_history)
|
1008 |
+
# # #print('prompt html',prompt_html)# Update the last tuple with new text
|
1009 |
+
|
1010 |
+
# # history_list = list(history[-1])
|
1011 |
+
# # history_list[1] = output # Assuming `character` is what you want to assign
|
1012 |
+
# # # Update the history with the modified list converted back to a tuple
|
1013 |
+
# # history[-1] = tuple(history_list)
|
1014 |
+
|
1015 |
+
# # #history[-1][1] = character
|
1016 |
+
# # # yield new_history, prompt_html
|
1017 |
+
# # yield history, prompt_html
|
1018 |
+
# # # new_history,prompt_html
|
1019 |
+
# # # history[-1][1] = ""
|
1020 |
+
# # # for character in generate_fn(prompt, history[:-1]):
|
1021 |
+
# # # history[-1][1] = character
|
1022 |
+
# # # yield history, prompt_html
|
1023 |
+
|
1024 |
+
# # #def translate_text(response_text, selected_language):
|
1025 |
+
|
1026 |
+
# # def translate_text(selected_language,history):
|
1027 |
+
|
1028 |
+
# # iso_language_codes = {
|
1029 |
+
# # "Hindi": "hi",
|
1030 |
+
# # "Gom": "gom",
|
1031 |
+
# # "Kannada": "kn",
|
1032 |
+
# # "Dogri": "doi",
|
1033 |
+
# # "Bodo": "brx",
|
1034 |
+
# # "Urdu": "ur",
|
1035 |
+
# # "Tamil": "ta",
|
1036 |
+
# # "Kashmiri": "ks",
|
1037 |
+
# # "Assamese": "as",
|
1038 |
+
# # "Bengali": "bn",
|
1039 |
+
# # "Marathi": "mr",
|
1040 |
+
# # "Sindhi": "sd",
|
1041 |
+
# # "Maithili": "mai",
|
1042 |
+
# # "Punjabi": "pa",
|
1043 |
+
# # "Malayalam": "ml",
|
1044 |
+
# # "Manipuri": "mni",
|
1045 |
+
# # "Telugu": "te",
|
1046 |
+
# # "Sanskrit": "sa",
|
1047 |
+
# # "Nepali": "ne",
|
1048 |
+
# # "Santali": "sat",
|
1049 |
+
# # "Gujarati": "gu",
|
1050 |
+
# # "Odia": "or"
|
1051 |
+
# # }
|
1052 |
+
|
1053 |
+
# # to_code = iso_language_codes[selected_language]
|
1054 |
+
# # response_text = history[-1][1] if history else ''
|
1055 |
+
# # print('response_text for translation',response_text)
|
1056 |
+
# # translation = bhashini_translate(response_text, to_code=to_code)
|
1057 |
+
# # return translation['translated_content']
|
1058 |
+
|
1059 |
+
|
1060 |
+
# # # Gradio interface
|
1061 |
+
# # with gr.Blocks(theme='gradio/soft') as CHATBOT:
|
1062 |
+
# # history_state = gr.State([])
|
1063 |
+
# # with gr.Row():
|
1064 |
+
# # with gr.Column(scale=10):
|
1065 |
+
# # gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
|
1066 |
+
# # gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
1067 |
+
# # gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
1068 |
+
|
1069 |
+
# # with gr.Column(scale=3):
|
1070 |
+
# # gr.Image(value='logo.png', height=200, width=200)
|
1071 |
+
|
1072 |
+
# # chatbot = gr.Chatbot(
|
1073 |
+
# # [],
|
1074 |
+
# # elem_id="chatbot",
|
1075 |
+
# # avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
1076 |
+
# # 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
1077 |
+
# # bubble_full_width=False,
|
1078 |
+
# # show_copy_button=True,
|
1079 |
+
# # show_share_button=True,
|
1080 |
+
# # )
|
1081 |
+
|
1082 |
+
# # with gr.Row():
|
1083 |
+
# # txt = gr.Textbox(
|
1084 |
+
# # scale=3,
|
1085 |
+
# # show_label=False,
|
1086 |
+
# # placeholder="Enter text and press enter",
|
1087 |
+
# # container=False,
|
1088 |
+
# # )
|
1089 |
+
# # txt_btn = gr.Button(value="Submit text", scale=1)
|
1090 |
+
|
1091 |
+
# # cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
|
1092 |
+
# # language_dropdown = gr.Dropdown(
|
1093 |
+
# # choices=[
|
1094 |
+
# # "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
1095 |
+
# # "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
1096 |
+
# # "Gujarati", "Odia"
|
1097 |
+
# # ],
|
1098 |
+
# # value="Hindi", # default to Hindi
|
1099 |
+
# # label="Select Language for Translation"
|
1100 |
+
# # )
|
1101 |
+
|
1102 |
+
# # prompt_html = gr.HTML()
|
1103 |
+
|
1104 |
+
# # translated_textbox = gr.Textbox(label="Translated Response")
|
1105 |
+
# # def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
|
1106 |
+
# # print('History state',history_state)
|
1107 |
+
# # history = history_state
|
1108 |
+
# # history.append((txt, ""))
|
1109 |
+
# # #history_state.value=(history)
|
1110 |
|
1111 |
+
# # # Call bot function
|
1112 |
+
# # # bot_output = list(bot(history, cross_encoder))
|
1113 |
+
# # bot_output = next(bot(history, cross_encoder))
|
1114 |
+
# # print('bot_output',bot_output)
|
1115 |
+
# # #history, prompt_html = bot_output[-1]
|
1116 |
+
# # history, prompt_html = bot_output
|
1117 |
+
# # print('History',history)
|
1118 |
+
# # # Update the history state
|
1119 |
+
# # history_state[:] = history
|
1120 |
|
1121 |
+
# # # Translate text
|
1122 |
+
# # translated_text = translate_text(language_dropdown, history)
|
1123 |
+
# # return history, prompt_html, translated_text
|
1124 |
|
1125 |
+
# # txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
|
1126 |
+
# # txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
|
1127 |
|
1128 |
+
# # examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
|
1129 |
+
# # 'EXPLAIN GOLGI APPARATUS']
|
1130 |
|
1131 |
+
# # gr.Examples(examples, txt)
|
1132 |
|
1133 |
|
1134 |
+
# # # Launch the Gradio application
|
1135 |
+
# # CHATBOT.launch(share=True,debug=True)
|
1136 |
|