Spaces:
Running
Running
| from __future__ import annotations | |
| import os | |
| import re | |
| import math | |
| import random | |
| import string | |
| from tqdm import tqdm | |
| from collections import defaultdict | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| import matplotlib.pylab as plt | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pad_sequence | |
| import torchaudio | |
| import einx | |
| from einops import rearrange, reduce | |
| import jieba | |
| from pypinyin import lazy_pinyin, Style | |
| from model.ecapa_tdnn import ECAPA_TDNN_SMALL | |
| from model.modules import MelSpec | |
| # seed everything | |
| def seed_everything(seed = 0): | |
| random.seed(seed) | |
| os.environ['PYTHONHASHSEED'] = str(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| # helpers | |
| def exists(v): | |
| return v is not None | |
| def default(v, d): | |
| return v if exists(v) else d | |
| # tensor helpers | |
| def lens_to_mask( | |
| t: int['b'], | |
| length: int | None = None | |
| ) -> bool['b n']: | |
| if not exists(length): | |
| length = t.amax() | |
| seq = torch.arange(length, device = t.device) | |
| return einx.less('n, b -> b n', seq, t) | |
| def mask_from_start_end_indices( | |
| seq_len: int['b'], | |
| start: int['b'], | |
| end: int['b'] | |
| ): | |
| max_seq_len = seq_len.max().item() | |
| seq = torch.arange(max_seq_len, device = start.device).long() | |
| return einx.greater_equal('n, b -> b n', seq, start) & einx.less('n, b -> b n', seq, end) | |
| def mask_from_frac_lengths( | |
| seq_len: int['b'], | |
| frac_lengths: float['b'] | |
| ): | |
| lengths = (frac_lengths * seq_len).long() | |
| max_start = seq_len - lengths | |
| rand = torch.rand_like(frac_lengths) | |
| start = (max_start * rand).long().clamp(min = 0) | |
| end = start + lengths | |
| return mask_from_start_end_indices(seq_len, start, end) | |
| def maybe_masked_mean( | |
| t: float['b n d'], | |
| mask: bool['b n'] = None | |
| ) -> float['b d']: | |
| if not exists(mask): | |
| return t.mean(dim = 1) | |
| t = einx.where('b n, b n d, -> b n d', mask, t, 0.) | |
| num = reduce(t, 'b n d -> b d', 'sum') | |
| den = reduce(mask.float(), 'b n -> b', 'sum') | |
| return einx.divide('b d, b -> b d', num, den.clamp(min = 1.)) | |
| # simple utf-8 tokenizer, since paper went character based | |
| def list_str_to_tensor( | |
| text: list[str], | |
| padding_value = -1 | |
| ) -> int['b nt']: | |
| list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] # ByT5 style | |
| text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True) | |
| return text | |
| # char tokenizer, based on custom dataset's extracted .txt file | |
| def list_str_to_idx( | |
| text: list[str] | list[list[str]], | |
| vocab_char_map: dict[str, int], # {char: idx} | |
| padding_value = -1 | |
| ) -> int['b nt']: | |
| list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style | |
| text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True) | |
| return text | |
| # Get tokenizer | |
| def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): | |
| ''' | |
| tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file | |
| - "char" for char-wise tokenizer, need .txt vocab_file | |
| - "byte" for utf-8 tokenizer | |
| - "custom" if you're directly passing in a path to the vocab.txt you want to use | |
| vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols | |
| - if use "char", derived from unfiltered character & symbol counts of custom dataset | |
| - if use "byte", set to 256 (unicode byte range) | |
| ''' | |
| if tokenizer in ["pinyin", "char"]: | |
| with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r", encoding="utf-8") as f: | |
| vocab_char_map = {} | |
| for i, char in enumerate(f): | |
| vocab_char_map[char[:-1]] = i | |
| vocab_size = len(vocab_char_map) | |
| assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" | |
| elif tokenizer == "byte": | |
| vocab_char_map = None | |
| vocab_size = 256 | |
| elif tokenizer == "custom": | |
| with open (dataset_name, "r", encoding="utf-8") as f: | |
| vocab_char_map = {} | |
| for i, char in enumerate(f): | |
| vocab_char_map[char[:-1]] = i | |
| vocab_size = len(vocab_char_map) | |
| return vocab_char_map, vocab_size | |
| # convert char to pinyin | |
| def convert_char_to_pinyin(text_list, polyphone = True): | |
| final_text_list = [] | |
| god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"}) # in case librispeech (orig no-pc) test-clean | |
| custom_trans = str.maketrans({';': ','}) # add custom trans here, to address oov | |
| for text in text_list: | |
| char_list = [] | |
| text = text.translate(god_knows_why_en_testset_contains_zh_quote) | |
| text = text.translate(custom_trans) | |
| for seg in jieba.cut(text): | |
| seg_byte_len = len(bytes(seg, 'UTF-8')) | |
| if seg_byte_len == len(seg): # if pure alphabets and symbols | |
| if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": | |
| char_list.append(" ") | |
| char_list.extend(seg) | |
| elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters | |
| seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) | |
| for c in seg: | |
| if c not in "。,、;:?!《》【】—…": | |
| char_list.append(" ") | |
| char_list.append(c) | |
| else: # if mixed chinese characters, alphabets and symbols | |
| for c in seg: | |
| if ord(c) < 256: | |
| char_list.extend(c) | |
| else: | |
| if c not in "。,、;:?!《》【】—…": | |
| char_list.append(" ") | |
| char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) | |
| else: # if is zh punc | |
| char_list.append(c) | |
| final_text_list.append(char_list) | |
| return final_text_list | |
| # save spectrogram | |
| def save_spectrogram(spectrogram, path): | |
| plt.figure(figsize=(12, 4)) | |
| plt.imshow(spectrogram, origin='lower', aspect='auto') | |
| plt.colorbar() | |
| plt.savefig(path) | |
| plt.close() | |
| # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
| def get_seedtts_testset_metainfo(metalst): | |
| f = open(metalst); lines = f.readlines(); f.close() | |
| metainfo = [] | |
| for line in lines: | |
| if len(line.strip().split('|')) == 5: | |
| utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') | |
| elif len(line.strip().split('|')) == 4: | |
| utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') | |
| gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav") | |
| if not os.path.isabs(prompt_wav): | |
| prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
| metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav)) | |
| return metainfo | |
| # librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav | |
| def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path): | |
| f = open(metalst); lines = f.readlines(); f.close() | |
| metainfo = [] | |
| for line in lines: | |
| ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') | |
| # ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
| ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') | |
| ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') | |
| # gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
| gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') | |
| gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') | |
| metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav)) | |
| return metainfo | |
| # padded to max length mel batch | |
| def padded_mel_batch(ref_mels): | |
| max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax() | |
| padded_ref_mels = [] | |
| for mel in ref_mels: | |
| padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0) | |
| padded_ref_mels.append(padded_ref_mel) | |
| padded_ref_mels = torch.stack(padded_ref_mels) | |
| padded_ref_mels = rearrange(padded_ref_mels, 'b d n -> b n d') | |
| return padded_ref_mels | |
| # get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
| def get_inference_prompt( | |
| metainfo, | |
| speed = 1., tokenizer = "pinyin", polyphone = True, | |
| target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1, | |
| use_truth_duration = False, | |
| infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40, | |
| ): | |
| prompts_all = [] | |
| min_tokens = min_secs * target_sample_rate // hop_length | |
| max_tokens = max_secs * target_sample_rate // hop_length | |
| batch_accum = [0] * num_buckets | |
| utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \ | |
| ([[] for _ in range(num_buckets)] for _ in range(6)) | |
| mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length) | |
| for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."): | |
| # Audio | |
| ref_audio, ref_sr = torchaudio.load(prompt_wav) | |
| ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio))) | |
| if ref_rms < target_rms: | |
| ref_audio = ref_audio * target_rms / ref_rms | |
| assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue." | |
| if ref_sr != target_sample_rate: | |
| resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate) | |
| ref_audio = resampler(ref_audio) | |
| # Text | |
| if len(prompt_text[-1].encode('utf-8')) == 1: | |
| prompt_text = prompt_text + " " | |
| text = [prompt_text + gt_text] | |
| if tokenizer == "pinyin": | |
| text_list = convert_char_to_pinyin(text, polyphone = polyphone) | |
| else: | |
| text_list = text | |
| # Duration, mel frame length | |
| ref_mel_len = ref_audio.shape[-1] // hop_length | |
| if use_truth_duration: | |
| gt_audio, gt_sr = torchaudio.load(gt_wav) | |
| if gt_sr != target_sample_rate: | |
| resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate) | |
| gt_audio = resampler(gt_audio) | |
| total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed) | |
| # # test vocoder resynthesis | |
| # ref_audio = gt_audio | |
| else: | |
| zh_pause_punc = r"。,、;:?!" | |
| ref_text_len = len(prompt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, prompt_text)) | |
| gen_text_len = len(gt_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gt_text)) | |
| total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed) | |
| # to mel spectrogram | |
| ref_mel = mel_spectrogram(ref_audio) | |
| ref_mel = rearrange(ref_mel, '1 d n -> d n') | |
| # deal with batch | |
| assert infer_batch_size > 0, "infer_batch_size should be greater than 0." | |
| assert min_tokens <= total_mel_len <= max_tokens, \ | |
| f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]." | |
| bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets) | |
| utts[bucket_i].append(utt) | |
| ref_rms_list[bucket_i].append(ref_rms) | |
| ref_mels[bucket_i].append(ref_mel) | |
| ref_mel_lens[bucket_i].append(ref_mel_len) | |
| total_mel_lens[bucket_i].append(total_mel_len) | |
| final_text_list[bucket_i].extend(text_list) | |
| batch_accum[bucket_i] += total_mel_len | |
| if batch_accum[bucket_i] >= infer_batch_size: | |
| # print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}") | |
| prompts_all.append(( | |
| utts[bucket_i], | |
| ref_rms_list[bucket_i], | |
| padded_mel_batch(ref_mels[bucket_i]), | |
| ref_mel_lens[bucket_i], | |
| total_mel_lens[bucket_i], | |
| final_text_list[bucket_i] | |
| )) | |
| batch_accum[bucket_i] = 0 | |
| utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], [] | |
| # add residual | |
| for bucket_i, bucket_frames in enumerate(batch_accum): | |
| if bucket_frames > 0: | |
| prompts_all.append(( | |
| utts[bucket_i], | |
| ref_rms_list[bucket_i], | |
| padded_mel_batch(ref_mels[bucket_i]), | |
| ref_mel_lens[bucket_i], | |
| total_mel_lens[bucket_i], | |
| final_text_list[bucket_i] | |
| )) | |
| # not only leave easy work for last workers | |
| random.seed(666) | |
| random.shuffle(prompts_all) | |
| return prompts_all | |
| # get wav_res_ref_text of seed-tts test metalst | |
| # https://github.com/BytedanceSpeech/seed-tts-eval | |
| def get_seed_tts_test(metalst, gen_wav_dir, gpus): | |
| f = open(metalst) | |
| lines = f.readlines() | |
| f.close() | |
| test_set_ = [] | |
| for line in tqdm(lines): | |
| if len(line.strip().split('|')) == 5: | |
| utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') | |
| elif len(line.strip().split('|')) == 4: | |
| utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') | |
| if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')): | |
| continue | |
| gen_wav = os.path.join(gen_wav_dir, utt + '.wav') | |
| if not os.path.isabs(prompt_wav): | |
| prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
| test_set_.append((gen_wav, prompt_wav, gt_text)) | |
| num_jobs = len(gpus) | |
| if num_jobs == 1: | |
| return [(gpus[0], test_set_)] | |
| wav_per_job = len(test_set_) // num_jobs + 1 | |
| test_set = [] | |
| for i in range(num_jobs): | |
| test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) | |
| return test_set | |
| # get librispeech test-clean cross sentence test | |
| def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False): | |
| f = open(metalst) | |
| lines = f.readlines() | |
| f.close() | |
| test_set_ = [] | |
| for line in tqdm(lines): | |
| ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') | |
| if eval_ground_truth: | |
| gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') | |
| gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') | |
| else: | |
| if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')): | |
| raise FileNotFoundError(f"Generated wav not found: {gen_utt}") | |
| gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav') | |
| ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') | |
| ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') | |
| test_set_.append((gen_wav, ref_wav, gen_txt)) | |
| num_jobs = len(gpus) | |
| if num_jobs == 1: | |
| return [(gpus[0], test_set_)] | |
| wav_per_job = len(test_set_) // num_jobs + 1 | |
| test_set = [] | |
| for i in range(num_jobs): | |
| test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) | |
| return test_set | |
| # load asr model | |
| def load_asr_model(lang, ckpt_dir = ""): | |
| if lang == "zh": | |
| from funasr import AutoModel | |
| model = AutoModel( | |
| model = os.path.join(ckpt_dir, "paraformer-zh"), | |
| # vad_model = os.path.join(ckpt_dir, "fsmn-vad"), | |
| # punc_model = os.path.join(ckpt_dir, "ct-punc"), | |
| # spk_model = os.path.join(ckpt_dir, "cam++"), | |
| disable_update=True, | |
| ) # following seed-tts setting | |
| elif lang == "en": | |
| from faster_whisper import WhisperModel | |
| model_size = "large-v3" if ckpt_dir == "" else ckpt_dir | |
| model = WhisperModel(model_size, device="cuda", compute_type="float16") | |
| return model | |
| # WER Evaluation, the way Seed-TTS does | |
| def run_asr_wer(args): | |
| rank, lang, test_set, ckpt_dir = args | |
| if lang == "zh": | |
| import zhconv | |
| torch.cuda.set_device(rank) | |
| elif lang == "en": | |
| os.environ["CUDA_VISIBLE_DEVICES"] = str(rank) | |
| else: | |
| raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.") | |
| asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir) | |
| from zhon.hanzi import punctuation | |
| punctuation_all = punctuation + string.punctuation | |
| wers = [] | |
| from jiwer import compute_measures | |
| for gen_wav, prompt_wav, truth in tqdm(test_set): | |
| if lang == "zh": | |
| res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True) | |
| hypo = res[0]["text"] | |
| hypo = zhconv.convert(hypo, 'zh-cn') | |
| elif lang == "en": | |
| segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en") | |
| hypo = '' | |
| for segment in segments: | |
| hypo = hypo + ' ' + segment.text | |
| # raw_truth = truth | |
| # raw_hypo = hypo | |
| for x in punctuation_all: | |
| truth = truth.replace(x, '') | |
| hypo = hypo.replace(x, '') | |
| truth = truth.replace(' ', ' ') | |
| hypo = hypo.replace(' ', ' ') | |
| if lang == "zh": | |
| truth = " ".join([x for x in truth]) | |
| hypo = " ".join([x for x in hypo]) | |
| elif lang == "en": | |
| truth = truth.lower() | |
| hypo = hypo.lower() | |
| measures = compute_measures(truth, hypo) | |
| wer = measures["wer"] | |
| # ref_list = truth.split(" ") | |
| # subs = measures["substitutions"] / len(ref_list) | |
| # dele = measures["deletions"] / len(ref_list) | |
| # inse = measures["insertions"] / len(ref_list) | |
| wers.append(wer) | |
| return wers | |
| # SIM Evaluation | |
| def run_sim(args): | |
| rank, test_set, ckpt_dir = args | |
| device = f"cuda:{rank}" | |
| model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None) | |
| state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage) | |
| model.load_state_dict(state_dict['model'], strict=False) | |
| use_gpu=True if torch.cuda.is_available() else False | |
| if use_gpu: | |
| model = model.cuda(device) | |
| model.eval() | |
| sim_list = [] | |
| for wav1, wav2, truth in tqdm(test_set): | |
| wav1, sr1 = torchaudio.load(wav1) | |
| wav2, sr2 = torchaudio.load(wav2) | |
| resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000) | |
| resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000) | |
| wav1 = resample1(wav1) | |
| wav2 = resample2(wav2) | |
| if use_gpu: | |
| wav1 = wav1.cuda(device) | |
| wav2 = wav2.cuda(device) | |
| with torch.no_grad(): | |
| emb1 = model(wav1) | |
| emb2 = model(wav2) | |
| sim = F.cosine_similarity(emb1, emb2)[0].item() | |
| # print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).") | |
| sim_list.append(sim) | |
| return sim_list | |
| # filter func for dirty data with many repetitions | |
| def repetition_found(text, length = 2, tolerance = 10): | |
| pattern_count = defaultdict(int) | |
| for i in range(len(text) - length + 1): | |
| pattern = text[i:i + length] | |
| pattern_count[pattern] += 1 | |
| for pattern, count in pattern_count.items(): | |
| if count > tolerance: | |
| return True | |
| return False | |
| # load model checkpoint for inference | |
| def load_checkpoint(model, ckpt_path, device, use_ema = True): | |
| from ema_pytorch import EMA | |
| ckpt_type = ckpt_path.split(".")[-1] | |
| if ckpt_type == "safetensors": | |
| from safetensors.torch import load_file | |
| checkpoint = load_file(ckpt_path, device=device) | |
| else: | |
| checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device) | |
| if use_ema == True: | |
| ema_model = EMA(model, include_online_model = False).to(device) | |
| if ckpt_type == "safetensors": | |
| ema_model.load_state_dict(checkpoint) | |
| else: | |
| ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
| ema_model.copy_params_from_ema_to_model() | |
| else: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| return model |