Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,15 @@ genai.configure(api_key="AIzaSyAxUd2tS-qj9C7frYuHRsv92tziXHgIvLo")
|
|
14 |
# Initialize ChromaDB
|
15 |
CHROMA_PATH = "chroma_db"
|
16 |
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
17 |
-
collection = chroma_client.get_or_create_collection(name="formula_1")
|
18 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
19 |
|
20 |
-
# Initialize session state to track if scraping is complete
|
21 |
if 'scraped' not in st.session_state:
|
22 |
st.session_state.scraped = False
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def clean_text(text):
|
25 |
text = re.sub(r'http\S+', '', text)
|
@@ -31,37 +34,49 @@ def split_content_into_chunks(content):
|
|
31 |
documents = [Document(page_content=content)]
|
32 |
return text_splitter.split_documents(documents)
|
33 |
|
34 |
-
def add_chunks_to_db(chunks):
|
|
|
|
|
|
|
35 |
documents = [chunk.page_content for chunk in chunks]
|
36 |
ids = [f"ID{i}" for i in range(len(chunks))]
|
37 |
embeddings = embedding_model.encode(documents, convert_to_list=True)
|
38 |
collection.upsert(documents=documents, ids=ids, embeddings=embeddings)
|
39 |
|
40 |
-
def scrape_text(url):
|
41 |
try:
|
42 |
response = requests.get(url)
|
43 |
response.raise_for_status()
|
44 |
soup = BeautifulSoup(response.text, 'html.parser')
|
45 |
text = clean_text(soup.get_text())
|
46 |
chunks = split_content_into_chunks(text)
|
47 |
-
add_chunks_to_db(chunks)
|
48 |
-
|
|
|
|
|
49 |
st.session_state.scraped = True
|
|
|
50 |
return "Scraping and processing complete. You can now ask questions!"
|
51 |
except requests.exceptions.RequestException as e:
|
52 |
return f"Error scraping {url}: {e}"
|
53 |
|
54 |
-
def ask_question(query):
|
|
|
|
|
|
|
55 |
query_embedding = embedding_model.encode(query, convert_to_list=True)
|
56 |
results = collection.query(query_embeddings=[query_embedding], n_results=2)
|
57 |
top_chunks = results.get("documents", [[]])[0]
|
58 |
|
59 |
-
system_prompt = """
|
60 |
-
You are a
|
61 |
-
|
62 |
-
knowledge and
|
63 |
-
If you don't know the answer, just say: I don't
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
full_prompt = system_prompt + "\nUser Query: " + query
|
67 |
model = genai.GenerativeModel('gemini-2.0-flash')
|
@@ -69,24 +84,30 @@ def ask_question(query):
|
|
69 |
return response.text
|
70 |
|
71 |
# Main UI
|
72 |
-
st.title("
|
73 |
|
74 |
# Scraping section
|
75 |
with st.container():
|
76 |
-
st.subheader("Step 1: Scrape a
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
|
|
80 |
if st.button("Scrape & Process"):
|
81 |
with st.spinner("Scraping and processing content..."):
|
82 |
-
result = scrape_text(url)
|
83 |
st.success(result)
|
84 |
|
85 |
# Q&A section - only appears after scraping is complete
|
86 |
if st.session_state.scraped:
|
87 |
with st.container():
|
88 |
-
st.subheader("Step 2: Ask Questions About
|
89 |
-
st.write("The database contains information scraped from the website. Ask a question
|
90 |
|
91 |
# Chat history
|
92 |
if 'chat_history' not in st.session_state:
|
@@ -98,7 +119,7 @@ if st.session_state.scraped:
|
|
98 |
st.write(message["content"])
|
99 |
|
100 |
# Input for new question
|
101 |
-
user_query = st.chat_input("Ask your
|
102 |
|
103 |
if user_query:
|
104 |
# Add user question to chat history
|
@@ -110,18 +131,35 @@ if st.session_state.scraped:
|
|
110 |
|
111 |
# Get and display answer
|
112 |
with st.chat_message("assistant"):
|
113 |
-
with st.spinner("Searching
|
114 |
-
answer = ask_question(user_query)
|
115 |
st.write(answer)
|
116 |
|
117 |
# Add answer to chat history
|
118 |
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Initialize ChromaDB
|
15 |
CHROMA_PATH = "chroma_db"
|
16 |
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
|
|
|
|
17 |
|
18 |
+
# Initialize session state to track if scraping is complete and collection name
|
19 |
if 'scraped' not in st.session_state:
|
20 |
st.session_state.scraped = False
|
21 |
+
if 'collection_name' not in st.session_state:
|
22 |
+
st.session_state.collection_name = ""
|
23 |
+
|
24 |
+
# Initialize embedding model
|
25 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
26 |
|
27 |
def clean_text(text):
|
28 |
text = re.sub(r'http\S+', '', text)
|
|
|
34 |
documents = [Document(page_content=content)]
|
35 |
return text_splitter.split_documents(documents)
|
36 |
|
37 |
+
def add_chunks_to_db(chunks, collection_name):
|
38 |
+
# Create or get collection
|
39 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
40 |
+
|
41 |
documents = [chunk.page_content for chunk in chunks]
|
42 |
ids = [f"ID{i}" for i in range(len(chunks))]
|
43 |
embeddings = embedding_model.encode(documents, convert_to_list=True)
|
44 |
collection.upsert(documents=documents, ids=ids, embeddings=embeddings)
|
45 |
|
46 |
+
def scrape_text(url, collection_name):
|
47 |
try:
|
48 |
response = requests.get(url)
|
49 |
response.raise_for_status()
|
50 |
soup = BeautifulSoup(response.text, 'html.parser')
|
51 |
text = clean_text(soup.get_text())
|
52 |
chunks = split_content_into_chunks(text)
|
53 |
+
add_chunks_to_db(chunks, collection_name)
|
54 |
+
|
55 |
+
# Store collection name and set scraped state to True
|
56 |
+
st.session_state.collection_name = collection_name
|
57 |
st.session_state.scraped = True
|
58 |
+
|
59 |
return "Scraping and processing complete. You can now ask questions!"
|
60 |
except requests.exceptions.RequestException as e:
|
61 |
return f"Error scraping {url}: {e}"
|
62 |
|
63 |
+
def ask_question(query, collection_name):
|
64 |
+
# Get the collection
|
65 |
+
collection = chroma_client.get_collection(name=collection_name)
|
66 |
+
|
67 |
query_embedding = embedding_model.encode(query, convert_to_list=True)
|
68 |
results = collection.query(query_embeddings=[query_embedding], n_results=2)
|
69 |
top_chunks = results.get("documents", [[]])[0]
|
70 |
|
71 |
+
system_prompt = f"""
|
72 |
+
You are a helpful assistant. You answer questions based on the provided context.
|
73 |
+
Only answer based on the knowledge I'm providing you. Don't use your internal
|
74 |
+
knowledge and don't make things up.
|
75 |
+
If you don't know the answer based on the provided context, just say: "I don't have enough information to answer that question based on the scraped content."
|
76 |
+
|
77 |
+
Context information:
|
78 |
+
{str(top_chunks)}
|
79 |
+
"""
|
80 |
|
81 |
full_prompt = system_prompt + "\nUser Query: " + query
|
82 |
model = genai.GenerativeModel('gemini-2.0-flash')
|
|
|
84 |
return response.text
|
85 |
|
86 |
# Main UI
|
87 |
+
st.title("Web Scraper & Q&A Chatbot")
|
88 |
|
89 |
# Scraping section
|
90 |
with st.container():
|
91 |
+
st.subheader("Step 1: Scrape a Website")
|
92 |
+
|
93 |
+
# Let user create a new database or use existing one
|
94 |
+
collection_name = st.text_input("Enter a name for this data collection:",
|
95 |
+
value="my_collection",
|
96 |
+
help="This will create a new database or use an existing one with this name")
|
97 |
|
98 |
+
url = st.text_input("Enter the URL to scrape:")
|
99 |
+
|
100 |
+
if url and collection_name:
|
101 |
if st.button("Scrape & Process"):
|
102 |
with st.spinner("Scraping and processing content..."):
|
103 |
+
result = scrape_text(url, collection_name)
|
104 |
st.success(result)
|
105 |
|
106 |
# Q&A section - only appears after scraping is complete
|
107 |
if st.session_state.scraped:
|
108 |
with st.container():
|
109 |
+
st.subheader("Step 2: Ask Questions About the Scraped Content")
|
110 |
+
st.write(f"The database '{st.session_state.collection_name}' contains information scraped from the website. Ask a question:")
|
111 |
|
112 |
# Chat history
|
113 |
if 'chat_history' not in st.session_state:
|
|
|
119 |
st.write(message["content"])
|
120 |
|
121 |
# Input for new question
|
122 |
+
user_query = st.chat_input("Ask your question here")
|
123 |
|
124 |
if user_query:
|
125 |
# Add user question to chat history
|
|
|
131 |
|
132 |
# Get and display answer
|
133 |
with st.chat_message("assistant"):
|
134 |
+
with st.spinner("Searching database..."):
|
135 |
+
answer = ask_question(user_query, st.session_state.collection_name)
|
136 |
st.write(answer)
|
137 |
|
138 |
# Add answer to chat history
|
139 |
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
140 |
|
141 |
+
# Selection of existing collections
|
142 |
+
with st.sidebar:
|
143 |
+
st.header("Database Management")
|
144 |
+
|
145 |
+
# List available collections
|
146 |
+
try:
|
147 |
+
all_collections = chroma_client.list_collections()
|
148 |
+
collection_names = [collection.name for collection in all_collections]
|
149 |
+
|
150 |
+
if collection_names:
|
151 |
+
st.write("Available data collections:")
|
152 |
+
selected_collection = st.selectbox("Select a collection to query:", collection_names)
|
153 |
+
|
154 |
+
if selected_collection and st.button("Load Selected Collection"):
|
155 |
+
st.session_state.collection_name = selected_collection
|
156 |
+
st.session_state.scraped = True
|
157 |
+
st.success(f"Loaded collection: {selected_collection}")
|
158 |
+
st.rerun() # Updated from experimental_rerun()
|
159 |
+
except Exception as e:
|
160 |
+
st.error(f"Error loading collections: {e}")
|
161 |
+
|
162 |
+
# Add a button to clear the session and start over
|
163 |
+
if st.button("Clear Chat History"):
|
164 |
+
st.session_state.chat_history = []
|
165 |
+
st.rerun() # Updated from experimental_rerun()
|