Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import re
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.docstore.document import Document
|
7 |
+
import chromadb
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import google.generativeai as genai
|
10 |
+
|
11 |
+
genai.configure(api_key="AIzaSyAxUd2tS-qj9C7frYuHRsv92tziXHgIvLo")
|
12 |
+
|
13 |
+
CHROMA_PATH = "chroma_db"
|
14 |
+
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
15 |
+
collection = chroma_client.get_or_create_collection(name="formula_1")
|
16 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
+
|
18 |
+
def clean_text(text):
|
19 |
+
text = re.sub(r'http\S+', '', text)
|
20 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
21 |
+
return text
|
22 |
+
|
23 |
+
def split_content_into_chunks(content):
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
|
25 |
+
documents = [Document(page_content=content)]
|
26 |
+
return text_splitter.split_documents(documents)
|
27 |
+
|
28 |
+
def add_chunks_to_db(chunks):
|
29 |
+
documents = [chunk.page_content for chunk in chunks]
|
30 |
+
ids = [f"ID{i}" for i in range(len(chunks))]
|
31 |
+
embeddings = embedding_model.encode(documents, convert_to_list=True)
|
32 |
+
collection.upsert(documents=documents, ids=ids, embeddings=embeddings)
|
33 |
+
|
34 |
+
def scrape_text(url):
|
35 |
+
try:
|
36 |
+
response = requests.get(url)
|
37 |
+
response.raise_for_status()
|
38 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
39 |
+
text = clean_text(soup.get_text())
|
40 |
+
chunks = split_content_into_chunks(text)
|
41 |
+
add_chunks_to_db(chunks)
|
42 |
+
return "Scraping and processing complete. You can now ask questions!"
|
43 |
+
except requests.exceptions.RequestException as e:
|
44 |
+
return f"Error scraping {url}: {e}"
|
45 |
+
|
46 |
+
def ask_question(query):
|
47 |
+
query_embedding = embedding_model.encode(query, convert_to_list=True)
|
48 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=2)
|
49 |
+
top_chunks = results.get("documents", [[]])[0]
|
50 |
+
system_prompt = """
|
51 |
+
You are a Formula 1 expert. You answer questions about Formula 1.
|
52 |
+
But you only answer based on knowledge I'm providing you. You don't use your internal
|
53 |
+
knowledge and you don't make things up.
|
54 |
+
If you don't know the answer, just say: I don't know.
|
55 |
+
""" + str(top_chunks)
|
56 |
+
full_prompt = system_prompt + "\nUser Query: " + query
|
57 |
+
model = genai.GenerativeModel('gemini-2.0-flash')
|
58 |
+
response = model.generate_content(full_prompt)
|
59 |
+
return response.text
|
60 |
+
|
61 |
+
st.title("Web Scraping & Chatbot")
|
62 |
+
|
63 |
+
url = st.text_input("Enter a URL:")
|
64 |
+
if url:
|
65 |
+
if st.button("Scrape & Process"):
|
66 |
+
result = scrape_text(url)
|
67 |
+
st.success(result)
|
68 |
+
|
69 |
+
if 'scraped' in st.session_state and st.session_state.scraped:
|
70 |
+
st.subheader("Ask a Question")
|
71 |
+
query = st.text_input("Enter your question:")
|
72 |
+
if query:
|
73 |
+
if st.button("Get Answer"):
|
74 |
+
answer = ask_question(query)
|
75 |
+
st.write(answer)
|