Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- pipeline_controlnet_xs_sd_xl_instantid.py +1914 -0
- utils/attention_processor.py +888 -0
- utils/callbacks.py +156 -0
- utils/controlnet_xs.py +2066 -0
- utils/modules.py +159 -0
- utils/resampler.py +159 -0
- utils/resize.py +107 -0
- utils/tools.py +124 -0
- utils/utils.py +94 -0
pipeline_controlnet_xs_sd_xl_instantid.py
ADDED
|
@@ -0,0 +1,1914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import inspect
|
| 4 |
+
import copy, os
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 7 |
+
import collections
|
| 8 |
+
import numpy as np
|
| 9 |
+
import PIL.Image
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from transformers import (
|
| 13 |
+
CLIPImageProcessor,
|
| 14 |
+
CLIPTextModel,
|
| 15 |
+
CLIPTextModelWithProjection,
|
| 16 |
+
CLIPTokenizer,
|
| 17 |
+
)
|
| 18 |
+
import gc
|
| 19 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 20 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
| 21 |
+
|
| 22 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 23 |
+
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
| 24 |
+
from diffusers.models import AutoencoderKL
|
| 25 |
+
from diffusers.models.attention_processor import (
|
| 26 |
+
AttnProcessor2_0,
|
| 27 |
+
LoRAAttnProcessor2_0,
|
| 28 |
+
LoRAXFormersAttnProcessor,
|
| 29 |
+
XFormersAttnProcessor,
|
| 30 |
+
)
|
| 31 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 32 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 33 |
+
|
| 34 |
+
from diffusers.utils import (
|
| 35 |
+
USE_PEFT_BACKEND,
|
| 36 |
+
is_torch_version,
|
| 37 |
+
logging,
|
| 38 |
+
replace_example_docstring,
|
| 39 |
+
scale_lora_layers,
|
| 40 |
+
unscale_lora_layers,
|
| 41 |
+
delete_adapter_layers,
|
| 42 |
+
set_adapter_layers,
|
| 43 |
+
set_weights_and_activate_adapters,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
| 47 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 48 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
from utils.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 52 |
+
|
| 53 |
+
# lora
|
| 54 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
| 55 |
+
from controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel
|
| 56 |
+
from diffusers.loaders.lora_conversion_utils import _maybe_map_sgm_blocks_to_diffusers, _convert_non_diffusers_lora_to_diffusers
|
| 57 |
+
from utils.tools import get_module_kohya_state_dict_xs
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
#ipa
|
| 61 |
+
from ip_adapter.resampler import Resampler
|
| 62 |
+
from ip_adapter.utils import is_torch2_available
|
| 63 |
+
if is_torch2_available():
|
| 64 |
+
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
| 65 |
+
else:
|
| 66 |
+
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
|
| 67 |
+
from ip_adapter.attention_processor import region_control
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if is_invisible_watermark_available():
|
| 71 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
EXAMPLE_DOC_STRING = """
|
| 78 |
+
Examples:
|
| 79 |
+
```py
|
| 80 |
+
>>> # !pip install opencv-python transformers accelerate
|
| 81 |
+
>>> from diffusers import StableDiffusionXLControlNetXSPipeline, ControlNetXSAdapter, AutoencoderKL
|
| 82 |
+
>>> from diffusers.utils import load_image
|
| 83 |
+
>>> import numpy as np
|
| 84 |
+
>>> import torch
|
| 85 |
+
|
| 86 |
+
>>> import cv2
|
| 87 |
+
>>> from PIL import Image
|
| 88 |
+
|
| 89 |
+
>>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
| 90 |
+
>>> negative_prompt = "low quality, bad quality, sketches"
|
| 91 |
+
|
| 92 |
+
>>> # download an image
|
| 93 |
+
>>> image = load_image(
|
| 94 |
+
... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
|
| 95 |
+
... )
|
| 96 |
+
|
| 97 |
+
>>> # initialize the models and pipeline
|
| 98 |
+
>>> controlnet_conditioning_scale = 0.5
|
| 99 |
+
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 100 |
+
>>> controlnet = ControlNetXSAdapter.from_pretrained(
|
| 101 |
+
... "UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16
|
| 102 |
+
... )
|
| 103 |
+
>>> pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained(
|
| 104 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
|
| 105 |
+
... )
|
| 106 |
+
>>> pipe.enable_model_cpu_offload()
|
| 107 |
+
|
| 108 |
+
>>> # get canny image
|
| 109 |
+
>>> image = np.array(image)
|
| 110 |
+
>>> image = cv2.Canny(image, 100, 200)
|
| 111 |
+
>>> image = image[:, :, None]
|
| 112 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
| 113 |
+
>>> canny_image = Image.fromarray(image)
|
| 114 |
+
|
| 115 |
+
>>> # generate image
|
| 116 |
+
>>> image = pipe(
|
| 117 |
+
... prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image
|
| 118 |
+
... ).images[0]
|
| 119 |
+
```
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
from transformers import CLIPTokenizer
|
| 124 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
|
| 125 |
+
|
| 126 |
+
class LongPromptWeight(object):
|
| 127 |
+
"""
|
| 128 |
+
Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
def __init__(self) -> None:
|
| 132 |
+
pass
|
| 133 |
+
|
| 134 |
+
def parse_prompt_attention(self, text):
|
| 135 |
+
"""
|
| 136 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
| 137 |
+
Accepted tokens are:
|
| 138 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
| 139 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
| 140 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
| 141 |
+
\( - literal character '('
|
| 142 |
+
\[ - literal character '['
|
| 143 |
+
\) - literal character ')'
|
| 144 |
+
\] - literal character ']'
|
| 145 |
+
\\ - literal character '\'
|
| 146 |
+
anything else - just text
|
| 147 |
+
|
| 148 |
+
>>> parse_prompt_attention('normal text')
|
| 149 |
+
[['normal text', 1.0]]
|
| 150 |
+
>>> parse_prompt_attention('an (important) word')
|
| 151 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
| 152 |
+
>>> parse_prompt_attention('(unbalanced')
|
| 153 |
+
[['unbalanced', 1.1]]
|
| 154 |
+
>>> parse_prompt_attention('\(literal\]')
|
| 155 |
+
[['(literal]', 1.0]]
|
| 156 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
| 157 |
+
[['unnecessaryparens', 1.1]]
|
| 158 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
| 159 |
+
[['a ', 1.0],
|
| 160 |
+
['house', 1.5730000000000004],
|
| 161 |
+
[' ', 1.1],
|
| 162 |
+
['on', 1.0],
|
| 163 |
+
[' a ', 1.1],
|
| 164 |
+
['hill', 0.55],
|
| 165 |
+
[', sun, ', 1.1],
|
| 166 |
+
['sky', 1.4641000000000006],
|
| 167 |
+
['.', 1.1]]
|
| 168 |
+
"""
|
| 169 |
+
import re
|
| 170 |
+
|
| 171 |
+
re_attention = re.compile(
|
| 172 |
+
r"""
|
| 173 |
+
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
|
| 174 |
+
\)|]|[^\\()\[\]:]+|:
|
| 175 |
+
""",
|
| 176 |
+
re.X,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
| 180 |
+
|
| 181 |
+
res = []
|
| 182 |
+
round_brackets = []
|
| 183 |
+
square_brackets = []
|
| 184 |
+
|
| 185 |
+
round_bracket_multiplier = 1.1
|
| 186 |
+
square_bracket_multiplier = 1 / 1.1
|
| 187 |
+
|
| 188 |
+
def multiply_range(start_position, multiplier):
|
| 189 |
+
for p in range(start_position, len(res)):
|
| 190 |
+
res[p][1] *= multiplier
|
| 191 |
+
|
| 192 |
+
for m in re_attention.finditer(text):
|
| 193 |
+
text = m.group(0)
|
| 194 |
+
weight = m.group(1)
|
| 195 |
+
|
| 196 |
+
if text.startswith("\\"):
|
| 197 |
+
res.append([text[1:], 1.0])
|
| 198 |
+
elif text == "(":
|
| 199 |
+
round_brackets.append(len(res))
|
| 200 |
+
elif text == "[":
|
| 201 |
+
square_brackets.append(len(res))
|
| 202 |
+
elif weight is not None and len(round_brackets) > 0:
|
| 203 |
+
multiply_range(round_brackets.pop(), float(weight))
|
| 204 |
+
elif text == ")" and len(round_brackets) > 0:
|
| 205 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
| 206 |
+
elif text == "]" and len(square_brackets) > 0:
|
| 207 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
| 208 |
+
else:
|
| 209 |
+
parts = re.split(re_break, text)
|
| 210 |
+
for i, part in enumerate(parts):
|
| 211 |
+
if i > 0:
|
| 212 |
+
res.append(["BREAK", -1])
|
| 213 |
+
res.append([part, 1.0])
|
| 214 |
+
|
| 215 |
+
for pos in round_brackets:
|
| 216 |
+
multiply_range(pos, round_bracket_multiplier)
|
| 217 |
+
|
| 218 |
+
for pos in square_brackets:
|
| 219 |
+
multiply_range(pos, square_bracket_multiplier)
|
| 220 |
+
|
| 221 |
+
if len(res) == 0:
|
| 222 |
+
res = [["", 1.0]]
|
| 223 |
+
|
| 224 |
+
# merge runs of identical weights
|
| 225 |
+
i = 0
|
| 226 |
+
while i + 1 < len(res):
|
| 227 |
+
if res[i][1] == res[i + 1][1]:
|
| 228 |
+
res[i][0] += res[i + 1][0]
|
| 229 |
+
res.pop(i + 1)
|
| 230 |
+
else:
|
| 231 |
+
i += 1
|
| 232 |
+
|
| 233 |
+
return res
|
| 234 |
+
|
| 235 |
+
def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
|
| 236 |
+
"""
|
| 237 |
+
Get prompt token ids and weights, this function works for both prompt and negative prompt
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
pipe (CLIPTokenizer)
|
| 241 |
+
A CLIPTokenizer
|
| 242 |
+
prompt (str)
|
| 243 |
+
A prompt string with weights
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
text_tokens (list)
|
| 247 |
+
A list contains token ids
|
| 248 |
+
text_weight (list)
|
| 249 |
+
A list contains the correspodent weight of token ids
|
| 250 |
+
|
| 251 |
+
Example:
|
| 252 |
+
import torch
|
| 253 |
+
from transformers import CLIPTokenizer
|
| 254 |
+
|
| 255 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained(
|
| 256 |
+
"stablediffusionapi/deliberate-v2"
|
| 257 |
+
, subfolder = "tokenizer"
|
| 258 |
+
, dtype = torch.float16
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
|
| 262 |
+
clip_tokenizer = clip_tokenizer
|
| 263 |
+
,prompt = "a (red:1.5) cat"*70
|
| 264 |
+
)
|
| 265 |
+
"""
|
| 266 |
+
texts_and_weights = self.parse_prompt_attention(prompt)
|
| 267 |
+
text_tokens, text_weights = [], []
|
| 268 |
+
for word, weight in texts_and_weights:
|
| 269 |
+
# tokenize and discard the starting and the ending token
|
| 270 |
+
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
|
| 271 |
+
# the returned token is a 1d list: [320, 1125, 539, 320]
|
| 272 |
+
|
| 273 |
+
# merge the new tokens to the all tokens holder: text_tokens
|
| 274 |
+
text_tokens = [*text_tokens, *token]
|
| 275 |
+
|
| 276 |
+
# each token chunk will come with one weight, like ['red cat', 2.0]
|
| 277 |
+
# need to expand weight for each token.
|
| 278 |
+
chunk_weights = [weight] * len(token)
|
| 279 |
+
|
| 280 |
+
# append the weight back to the weight holder: text_weights
|
| 281 |
+
text_weights = [*text_weights, *chunk_weights]
|
| 282 |
+
return text_tokens, text_weights
|
| 283 |
+
|
| 284 |
+
def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
|
| 285 |
+
"""
|
| 286 |
+
Produce tokens and weights in groups and pad the missing tokens
|
| 287 |
+
|
| 288 |
+
Args:
|
| 289 |
+
token_ids (list)
|
| 290 |
+
The token ids from tokenizer
|
| 291 |
+
weights (list)
|
| 292 |
+
The weights list from function get_prompts_tokens_with_weights
|
| 293 |
+
pad_last_block (bool)
|
| 294 |
+
Control if fill the last token list to 75 tokens with eos
|
| 295 |
+
Returns:
|
| 296 |
+
new_token_ids (2d list)
|
| 297 |
+
new_weights (2d list)
|
| 298 |
+
|
| 299 |
+
Example:
|
| 300 |
+
token_groups,weight_groups = group_tokens_and_weights(
|
| 301 |
+
token_ids = token_id_list
|
| 302 |
+
, weights = token_weight_list
|
| 303 |
+
)
|
| 304 |
+
"""
|
| 305 |
+
bos, eos = 49406, 49407
|
| 306 |
+
|
| 307 |
+
# this will be a 2d list
|
| 308 |
+
new_token_ids = []
|
| 309 |
+
new_weights = []
|
| 310 |
+
while len(token_ids) >= 75:
|
| 311 |
+
# get the first 75 tokens
|
| 312 |
+
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
|
| 313 |
+
head_75_weights = [weights.pop(0) for _ in range(75)]
|
| 314 |
+
|
| 315 |
+
# extract token ids and weights
|
| 316 |
+
temp_77_token_ids = [bos] + head_75_tokens + [eos]
|
| 317 |
+
temp_77_weights = [1.0] + head_75_weights + [1.0]
|
| 318 |
+
|
| 319 |
+
# add 77 token and weights chunk to the holder list
|
| 320 |
+
new_token_ids.append(temp_77_token_ids)
|
| 321 |
+
new_weights.append(temp_77_weights)
|
| 322 |
+
|
| 323 |
+
# padding the left
|
| 324 |
+
if len(token_ids) >= 0:
|
| 325 |
+
padding_len = 75 - len(token_ids) if pad_last_block else 0
|
| 326 |
+
|
| 327 |
+
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
|
| 328 |
+
new_token_ids.append(temp_77_token_ids)
|
| 329 |
+
|
| 330 |
+
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
|
| 331 |
+
new_weights.append(temp_77_weights)
|
| 332 |
+
|
| 333 |
+
return new_token_ids, new_weights
|
| 334 |
+
|
| 335 |
+
def get_weighted_text_embeddings_sdxl(
|
| 336 |
+
self,
|
| 337 |
+
pipe: StableDiffusionXLPipeline,
|
| 338 |
+
prompt: str = "",
|
| 339 |
+
prompt_2: str = None,
|
| 340 |
+
neg_prompt: str = "",
|
| 341 |
+
neg_prompt_2: str = None,
|
| 342 |
+
prompt_embeds=None,
|
| 343 |
+
negative_prompt_embeds=None,
|
| 344 |
+
pooled_prompt_embeds=None,
|
| 345 |
+
negative_pooled_prompt_embeds=None,
|
| 346 |
+
extra_emb=None,
|
| 347 |
+
extra_emb_alpha=0.6,
|
| 348 |
+
):
|
| 349 |
+
"""
|
| 350 |
+
This function can process long prompt with weights, no length limitation
|
| 351 |
+
for Stable Diffusion XL
|
| 352 |
+
|
| 353 |
+
Args:
|
| 354 |
+
pipe (StableDiffusionPipeline)
|
| 355 |
+
prompt (str)
|
| 356 |
+
prompt_2 (str)
|
| 357 |
+
neg_prompt (str)
|
| 358 |
+
neg_prompt_2 (str)
|
| 359 |
+
Returns:
|
| 360 |
+
prompt_embeds (torch.Tensor)
|
| 361 |
+
neg_prompt_embeds (torch.Tensor)
|
| 362 |
+
"""
|
| 363 |
+
#
|
| 364 |
+
if prompt_embeds is not None and \
|
| 365 |
+
negative_prompt_embeds is not None and \
|
| 366 |
+
pooled_prompt_embeds is not None and \
|
| 367 |
+
negative_pooled_prompt_embeds is not None:
|
| 368 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 369 |
+
|
| 370 |
+
if prompt_2:
|
| 371 |
+
prompt = f"{prompt} {prompt_2}"
|
| 372 |
+
|
| 373 |
+
if neg_prompt_2:
|
| 374 |
+
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
|
| 375 |
+
|
| 376 |
+
eos = pipe.tokenizer.eos_token_id
|
| 377 |
+
|
| 378 |
+
# tokenizer 1
|
| 379 |
+
prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
| 380 |
+
neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
| 381 |
+
|
| 382 |
+
# tokenizer 2
|
| 383 |
+
# prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
|
| 384 |
+
# neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
|
| 385 |
+
# tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
|
| 386 |
+
prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
| 387 |
+
neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
| 388 |
+
|
| 389 |
+
# padding the shorter one for prompt set 1
|
| 390 |
+
prompt_token_len = len(prompt_tokens)
|
| 391 |
+
neg_prompt_token_len = len(neg_prompt_tokens)
|
| 392 |
+
|
| 393 |
+
if prompt_token_len > neg_prompt_token_len:
|
| 394 |
+
# padding the neg_prompt with eos token
|
| 395 |
+
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
| 396 |
+
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
| 397 |
+
else:
|
| 398 |
+
# padding the prompt
|
| 399 |
+
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
| 400 |
+
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
| 401 |
+
|
| 402 |
+
# padding the shorter one for token set 2
|
| 403 |
+
prompt_token_len_2 = len(prompt_tokens_2)
|
| 404 |
+
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
|
| 405 |
+
|
| 406 |
+
if prompt_token_len_2 > neg_prompt_token_len_2:
|
| 407 |
+
# padding the neg_prompt with eos token
|
| 408 |
+
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
| 409 |
+
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
| 410 |
+
else:
|
| 411 |
+
# padding the prompt
|
| 412 |
+
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
| 413 |
+
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
| 414 |
+
|
| 415 |
+
embeds = []
|
| 416 |
+
neg_embeds = []
|
| 417 |
+
|
| 418 |
+
prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(),
|
| 419 |
+
prompt_weights.copy())
|
| 420 |
+
|
| 421 |
+
neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
|
| 422 |
+
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
|
| 426 |
+
prompt_tokens_2.copy(), prompt_weights_2.copy()
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
|
| 430 |
+
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
# get prompt embeddings one by one is not working.
|
| 434 |
+
for i in range(len(prompt_token_groups)):
|
| 435 |
+
# get positive prompt embeddings with weights
|
| 436 |
+
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
| 437 |
+
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
| 438 |
+
|
| 439 |
+
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
| 440 |
+
|
| 441 |
+
# use first text encoder
|
| 442 |
+
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
|
| 443 |
+
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
|
| 444 |
+
|
| 445 |
+
# use second text encoder
|
| 446 |
+
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
|
| 447 |
+
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
|
| 448 |
+
pooled_prompt_embeds = prompt_embeds_2[0]
|
| 449 |
+
|
| 450 |
+
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
|
| 451 |
+
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
|
| 452 |
+
|
| 453 |
+
for j in range(len(weight_tensor)):
|
| 454 |
+
if weight_tensor[j] != 1.0:
|
| 455 |
+
token_embedding[j] = (
|
| 456 |
+
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
token_embedding = token_embedding.unsqueeze(0)
|
| 460 |
+
embeds.append(token_embedding)
|
| 461 |
+
|
| 462 |
+
# get negative prompt embeddings with weights
|
| 463 |
+
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
| 464 |
+
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
| 465 |
+
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
| 466 |
+
|
| 467 |
+
# use first text encoder
|
| 468 |
+
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
|
| 469 |
+
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
|
| 470 |
+
|
| 471 |
+
# use second text encoder
|
| 472 |
+
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
|
| 473 |
+
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
|
| 474 |
+
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
|
| 475 |
+
|
| 476 |
+
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
|
| 477 |
+
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
|
| 478 |
+
|
| 479 |
+
for z in range(len(neg_weight_tensor)):
|
| 480 |
+
if neg_weight_tensor[z] != 1.0:
|
| 481 |
+
neg_token_embedding[z] = (
|
| 482 |
+
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) *
|
| 483 |
+
neg_weight_tensor[z]
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
neg_token_embedding = neg_token_embedding.unsqueeze(0)
|
| 487 |
+
neg_embeds.append(neg_token_embedding)
|
| 488 |
+
|
| 489 |
+
prompt_embeds = torch.cat(embeds, dim=1)
|
| 490 |
+
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
|
| 491 |
+
|
| 492 |
+
if extra_emb is not None:
|
| 493 |
+
extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
|
| 494 |
+
prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
|
| 495 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
|
| 496 |
+
print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
|
| 497 |
+
|
| 498 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 499 |
+
|
| 500 |
+
def get_prompt_embeds(self, *args, **kwargs):
|
| 501 |
+
prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
|
| 502 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 503 |
+
return prompt_embeds
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
class StableDiffusionXLControlNetXSPipeline(
|
| 507 |
+
DiffusionPipeline,
|
| 508 |
+
TextualInversionLoaderMixin,
|
| 509 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 510 |
+
FromSingleFileMixin,
|
| 511 |
+
):
|
| 512 |
+
r"""
|
| 513 |
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet-XS guidance.
|
| 514 |
+
|
| 515 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 516 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 517 |
+
|
| 518 |
+
The pipeline also inherits the following loading methods:
|
| 519 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 520 |
+
- [`loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 521 |
+
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 522 |
+
|
| 523 |
+
Args:
|
| 524 |
+
vae ([`AutoencoderKL`]):
|
| 525 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 526 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
| 527 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 528 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
| 529 |
+
Second frozen text-encoder
|
| 530 |
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
| 531 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
| 532 |
+
A `CLIPTokenizer` to tokenize text.
|
| 533 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
| 534 |
+
A `CLIPTokenizer` to tokenize text.
|
| 535 |
+
unet ([`UNet2DConditionModel`]):
|
| 536 |
+
A [`UNet2DConditionModel`] used to create a UNetControlNetXSModel to denoise the encoded image latents.
|
| 537 |
+
controlnet ([`ControlNetXSAdapter`]):
|
| 538 |
+
A [`ControlNetXSAdapter`] to be used in combination with `unet` to denoise the encoded image latents.
|
| 539 |
+
scheduler ([`SchedulerMixin`]):
|
| 540 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 541 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 542 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
| 543 |
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
| 544 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
| 545 |
+
add_watermarker (`bool`, *optional*):
|
| 546 |
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
| 547 |
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
| 548 |
+
watermarker is used.
|
| 549 |
+
"""
|
| 550 |
+
|
| 551 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
| 552 |
+
_optional_components = [
|
| 553 |
+
"tokenizer",
|
| 554 |
+
"tokenizer_2",
|
| 555 |
+
"text_encoder",
|
| 556 |
+
"text_encoder_2",
|
| 557 |
+
"feature_extractor",
|
| 558 |
+
]
|
| 559 |
+
_callback_tensor_inputs = [
|
| 560 |
+
"latents",
|
| 561 |
+
"prompt_embeds",
|
| 562 |
+
"negative_prompt_embeds",
|
| 563 |
+
"add_text_embeds",
|
| 564 |
+
"add_time_ids",
|
| 565 |
+
"negative_pooled_prompt_embeds",
|
| 566 |
+
"negative_add_time_ids",
|
| 567 |
+
]
|
| 568 |
+
|
| 569 |
+
def __init__(
|
| 570 |
+
self,
|
| 571 |
+
vae: AutoencoderKL,
|
| 572 |
+
text_encoder: CLIPTextModel,
|
| 573 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
| 574 |
+
tokenizer: CLIPTokenizer,
|
| 575 |
+
tokenizer_2: CLIPTokenizer,
|
| 576 |
+
unet: Union[UNet2DConditionModel, UNetControlNetXSModel],
|
| 577 |
+
controlnet: ControlNetXSAdapter,
|
| 578 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 579 |
+
force_zeros_for_empty_prompt: bool = True,
|
| 580 |
+
add_watermarker: Optional[bool] = None,
|
| 581 |
+
feature_extractor: CLIPImageProcessor = None,
|
| 582 |
+
):
|
| 583 |
+
super().__init__()
|
| 584 |
+
# self.org_unet_config = copy.deepcopy(unet.config)
|
| 585 |
+
if isinstance(unet, UNet2DConditionModel):
|
| 586 |
+
unet = UNetControlNetXSModel.from_unet(unet, controlnet)
|
| 587 |
+
|
| 588 |
+
self.register_modules(
|
| 589 |
+
vae=vae,
|
| 590 |
+
text_encoder=text_encoder,
|
| 591 |
+
text_encoder_2=text_encoder_2,
|
| 592 |
+
tokenizer=tokenizer,
|
| 593 |
+
tokenizer_2=tokenizer_2,
|
| 594 |
+
unet=unet,
|
| 595 |
+
controlnet=controlnet,
|
| 596 |
+
scheduler=scheduler,
|
| 597 |
+
feature_extractor=feature_extractor,
|
| 598 |
+
)
|
| 599 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 600 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
| 601 |
+
self.control_image_processor = VaeImageProcessor(
|
| 602 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
| 603 |
+
)
|
| 604 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
| 605 |
+
|
| 606 |
+
if add_watermarker:
|
| 607 |
+
self.watermark = StableDiffusionXLWatermarker()
|
| 608 |
+
else:
|
| 609 |
+
self.watermark = None
|
| 610 |
+
|
| 611 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
| 612 |
+
|
| 613 |
+
def cuda(self, org_unet_config=None, device='cuda', dtype=torch.float16, use_xformers=False):
|
| 614 |
+
self.org_unet_config = org_unet_config
|
| 615 |
+
self.to(device, dtype)
|
| 616 |
+
|
| 617 |
+
if hasattr(self, 'image_proj_model'):
|
| 618 |
+
self.image_proj_model.to(device).to(dtype)
|
| 619 |
+
|
| 620 |
+
if use_xformers:
|
| 621 |
+
if is_xformers_available():
|
| 622 |
+
import xformers
|
| 623 |
+
from packaging import version
|
| 624 |
+
|
| 625 |
+
xformers_version = version.parse(xformers.__version__)
|
| 626 |
+
if xformers_version == version.parse("0.0.16"):
|
| 627 |
+
logger.warn(
|
| 628 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
| 629 |
+
)
|
| 630 |
+
self.enable_xformers_memory_efficient_attention()
|
| 631 |
+
else:
|
| 632 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
| 633 |
+
|
| 634 |
+
def encode_prompt(
|
| 635 |
+
self,
|
| 636 |
+
prompt: str,
|
| 637 |
+
prompt_2: Optional[str] = None,
|
| 638 |
+
device: Optional[torch.device] = None,
|
| 639 |
+
num_images_per_prompt: int = 1,
|
| 640 |
+
do_classifier_free_guidance: bool = True,
|
| 641 |
+
negative_prompt: Optional[str] = None,
|
| 642 |
+
negative_prompt_2: Optional[str] = None,
|
| 643 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 644 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 645 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 646 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 647 |
+
lora_scale: Optional[float] = None,
|
| 648 |
+
clip_skip: Optional[int] = None,
|
| 649 |
+
):
|
| 650 |
+
r"""
|
| 651 |
+
Encodes the prompt into text encoder hidden states.
|
| 652 |
+
|
| 653 |
+
Args:
|
| 654 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 655 |
+
prompt to be encoded
|
| 656 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 657 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 658 |
+
used in both text-encoders
|
| 659 |
+
device: (`torch.device`):
|
| 660 |
+
torch device
|
| 661 |
+
num_images_per_prompt (`int`):
|
| 662 |
+
number of images that should be generated per prompt
|
| 663 |
+
do_classifier_free_guidance (`bool`):
|
| 664 |
+
whether to use classifier free guidance or not
|
| 665 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 666 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 667 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 668 |
+
less than `1`).
|
| 669 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 670 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 671 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 672 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 673 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 674 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 675 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 676 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 677 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 678 |
+
argument.
|
| 679 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 680 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 681 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 682 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 683 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 684 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 685 |
+
input argument.
|
| 686 |
+
lora_scale (`float`, *optional*):
|
| 687 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 688 |
+
clip_skip (`int`, *optional*):
|
| 689 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 690 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 691 |
+
"""
|
| 692 |
+
device = device or self._execution_device
|
| 693 |
+
|
| 694 |
+
# set lora scale so that monkey patched LoRA
|
| 695 |
+
# function of text encoder can correctly access it
|
| 696 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
| 697 |
+
self._lora_scale = lora_scale
|
| 698 |
+
|
| 699 |
+
# dynamically adjust the LoRA scale
|
| 700 |
+
if self.text_encoder is not None:
|
| 701 |
+
if not USE_PEFT_BACKEND:
|
| 702 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
| 703 |
+
else:
|
| 704 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 705 |
+
|
| 706 |
+
if self.text_encoder_2 is not None:
|
| 707 |
+
if not USE_PEFT_BACKEND:
|
| 708 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
| 709 |
+
else:
|
| 710 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 711 |
+
|
| 712 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 713 |
+
|
| 714 |
+
if prompt is not None:
|
| 715 |
+
batch_size = len(prompt)
|
| 716 |
+
else:
|
| 717 |
+
batch_size = prompt_embeds.shape[0]
|
| 718 |
+
|
| 719 |
+
# Define tokenizers and text encoders
|
| 720 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
| 721 |
+
text_encoders = (
|
| 722 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
if prompt_embeds is None:
|
| 726 |
+
prompt_2 = prompt_2 or prompt
|
| 727 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 728 |
+
|
| 729 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 730 |
+
prompt_embeds_list = []
|
| 731 |
+
prompts = [prompt, prompt_2]
|
| 732 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
| 733 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 734 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
| 735 |
+
|
| 736 |
+
text_inputs = tokenizer(
|
| 737 |
+
prompt,
|
| 738 |
+
padding="max_length",
|
| 739 |
+
max_length=tokenizer.model_max_length,
|
| 740 |
+
truncation=True,
|
| 741 |
+
return_tensors="pt",
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
text_input_ids = text_inputs.input_ids
|
| 745 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 746 |
+
|
| 747 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 748 |
+
text_input_ids, untruncated_ids
|
| 749 |
+
):
|
| 750 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
| 751 |
+
logger.warning(
|
| 752 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 753 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
| 757 |
+
|
| 758 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 759 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 760 |
+
if clip_skip is None:
|
| 761 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 762 |
+
else:
|
| 763 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
| 764 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 765 |
+
|
| 766 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 767 |
+
|
| 768 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 769 |
+
|
| 770 |
+
# get unconditional embeddings for classifier free guidance
|
| 771 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
| 772 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
| 773 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
| 774 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
| 775 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 776 |
+
negative_prompt = negative_prompt or ""
|
| 777 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 778 |
+
|
| 779 |
+
# normalize str to list
|
| 780 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 781 |
+
negative_prompt_2 = (
|
| 782 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
uncond_tokens: List[str]
|
| 786 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 787 |
+
raise TypeError(
|
| 788 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 789 |
+
f" {type(prompt)}."
|
| 790 |
+
)
|
| 791 |
+
elif batch_size != len(negative_prompt):
|
| 792 |
+
raise ValueError(
|
| 793 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 794 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 795 |
+
" the batch size of `prompt`."
|
| 796 |
+
)
|
| 797 |
+
else:
|
| 798 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
| 799 |
+
|
| 800 |
+
negative_prompt_embeds_list = []
|
| 801 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
| 802 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 803 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
| 804 |
+
|
| 805 |
+
max_length = prompt_embeds.shape[1]
|
| 806 |
+
uncond_input = tokenizer(
|
| 807 |
+
negative_prompt,
|
| 808 |
+
padding="max_length",
|
| 809 |
+
max_length=max_length,
|
| 810 |
+
truncation=True,
|
| 811 |
+
return_tensors="pt",
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
negative_prompt_embeds = text_encoder(
|
| 815 |
+
uncond_input.input_ids.to(device),
|
| 816 |
+
output_hidden_states=True,
|
| 817 |
+
)
|
| 818 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 819 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
| 820 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
| 821 |
+
|
| 822 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
| 823 |
+
|
| 824 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
| 825 |
+
|
| 826 |
+
if self.text_encoder_2 is not None:
|
| 827 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
| 828 |
+
else:
|
| 829 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
| 830 |
+
|
| 831 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 832 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 833 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 834 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 835 |
+
|
| 836 |
+
if do_classifier_free_guidance:
|
| 837 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 838 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 839 |
+
|
| 840 |
+
if self.text_encoder_2 is not None:
|
| 841 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
| 842 |
+
else:
|
| 843 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
| 844 |
+
|
| 845 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 846 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 847 |
+
|
| 848 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
| 849 |
+
bs_embed * num_images_per_prompt, -1
|
| 850 |
+
)
|
| 851 |
+
if do_classifier_free_guidance:
|
| 852 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
| 853 |
+
bs_embed * num_images_per_prompt, -1
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
if self.text_encoder is not None:
|
| 857 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 858 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 859 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 860 |
+
|
| 861 |
+
if self.text_encoder_2 is not None:
|
| 862 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 863 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 864 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 865 |
+
|
| 866 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 867 |
+
|
| 868 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 869 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 870 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 871 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 872 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 873 |
+
# and should be between [0, 1]
|
| 874 |
+
|
| 875 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 876 |
+
extra_step_kwargs = {}
|
| 877 |
+
if accepts_eta:
|
| 878 |
+
extra_step_kwargs["eta"] = eta
|
| 879 |
+
|
| 880 |
+
# check if the scheduler accepts generator
|
| 881 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 882 |
+
if accepts_generator:
|
| 883 |
+
extra_step_kwargs["generator"] = generator
|
| 884 |
+
return extra_step_kwargs
|
| 885 |
+
|
| 886 |
+
def check_inputs(
|
| 887 |
+
self,
|
| 888 |
+
prompt,
|
| 889 |
+
prompt_2,
|
| 890 |
+
image,
|
| 891 |
+
negative_prompt=None,
|
| 892 |
+
negative_prompt_2=None,
|
| 893 |
+
prompt_embeds=None,
|
| 894 |
+
negative_prompt_embeds=None,
|
| 895 |
+
pooled_prompt_embeds=None,
|
| 896 |
+
negative_pooled_prompt_embeds=None,
|
| 897 |
+
controlnet_conditioning_scale=1.0,
|
| 898 |
+
control_guidance_start=0.0,
|
| 899 |
+
control_guidance_end=1.0,
|
| 900 |
+
callback_on_step_end_tensor_inputs=None,
|
| 901 |
+
):
|
| 902 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 903 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 904 |
+
):
|
| 905 |
+
raise ValueError(
|
| 906 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 907 |
+
)
|
| 908 |
+
|
| 909 |
+
if prompt is not None and prompt_embeds is not None:
|
| 910 |
+
raise ValueError(
|
| 911 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 912 |
+
" only forward one of the two."
|
| 913 |
+
)
|
| 914 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 915 |
+
raise ValueError(
|
| 916 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 917 |
+
" only forward one of the two."
|
| 918 |
+
)
|
| 919 |
+
elif prompt is None and prompt_embeds is None:
|
| 920 |
+
raise ValueError(
|
| 921 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 922 |
+
)
|
| 923 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 924 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 925 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 926 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 927 |
+
|
| 928 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 929 |
+
raise ValueError(
|
| 930 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 931 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 932 |
+
)
|
| 933 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 934 |
+
raise ValueError(
|
| 935 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 936 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 940 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 941 |
+
raise ValueError(
|
| 942 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 943 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 944 |
+
f" {negative_prompt_embeds.shape}."
|
| 945 |
+
)
|
| 946 |
+
|
| 947 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 948 |
+
raise ValueError(
|
| 949 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 953 |
+
raise ValueError(
|
| 954 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
# Check `image` and ``controlnet_conditioning_scale``
|
| 958 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
| 959 |
+
self.unet, torch._dynamo.eval_frame.OptimizedModule
|
| 960 |
+
)
|
| 961 |
+
if (
|
| 962 |
+
isinstance(self.unet, UNetControlNetXSModel)
|
| 963 |
+
or is_compiled
|
| 964 |
+
and isinstance(self.unet._orig_mod, UNetControlNetXSModel)
|
| 965 |
+
):
|
| 966 |
+
self.check_image(image, prompt, prompt_embeds)
|
| 967 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
| 968 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
| 969 |
+
else:
|
| 970 |
+
assert False
|
| 971 |
+
|
| 972 |
+
start, end = control_guidance_start, control_guidance_end
|
| 973 |
+
if start >= end:
|
| 974 |
+
raise ValueError(
|
| 975 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
| 976 |
+
)
|
| 977 |
+
if start < 0.0:
|
| 978 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
| 979 |
+
if end > 1.0:
|
| 980 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
| 981 |
+
|
| 982 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
| 983 |
+
def check_image(self, image, prompt, prompt_embeds):
|
| 984 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
| 985 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
| 986 |
+
image_is_np = isinstance(image, np.ndarray)
|
| 987 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
| 988 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
| 989 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
| 990 |
+
|
| 991 |
+
if (
|
| 992 |
+
not image_is_pil
|
| 993 |
+
and not image_is_tensor
|
| 994 |
+
and not image_is_np
|
| 995 |
+
and not image_is_pil_list
|
| 996 |
+
and not image_is_tensor_list
|
| 997 |
+
and not image_is_np_list
|
| 998 |
+
):
|
| 999 |
+
raise TypeError(
|
| 1000 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if image_is_pil:
|
| 1004 |
+
image_batch_size = 1
|
| 1005 |
+
else:
|
| 1006 |
+
image_batch_size = len(image)
|
| 1007 |
+
|
| 1008 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1009 |
+
prompt_batch_size = 1
|
| 1010 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1011 |
+
prompt_batch_size = len(prompt)
|
| 1012 |
+
elif prompt_embeds is not None:
|
| 1013 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
| 1014 |
+
|
| 1015 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
| 1016 |
+
raise ValueError(
|
| 1017 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
| 1018 |
+
)
|
| 1019 |
+
|
| 1020 |
+
def prepare_image(
|
| 1021 |
+
self,
|
| 1022 |
+
image,
|
| 1023 |
+
width,
|
| 1024 |
+
height,
|
| 1025 |
+
batch_size,
|
| 1026 |
+
num_images_per_prompt,
|
| 1027 |
+
device,
|
| 1028 |
+
dtype,
|
| 1029 |
+
do_classifier_free_guidance=False,
|
| 1030 |
+
):
|
| 1031 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
| 1032 |
+
image_batch_size = image.shape[0]
|
| 1033 |
+
|
| 1034 |
+
if image_batch_size == 1:
|
| 1035 |
+
repeat_by = batch_size
|
| 1036 |
+
else:
|
| 1037 |
+
# image batch size is the same as prompt batch size
|
| 1038 |
+
repeat_by = num_images_per_prompt
|
| 1039 |
+
|
| 1040 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
| 1041 |
+
|
| 1042 |
+
image = image.to(device=device, dtype=dtype)
|
| 1043 |
+
|
| 1044 |
+
if do_classifier_free_guidance:
|
| 1045 |
+
image = torch.cat([image] * 2)
|
| 1046 |
+
|
| 1047 |
+
return image
|
| 1048 |
+
|
| 1049 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 1050 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 1051 |
+
shape = (
|
| 1052 |
+
batch_size,
|
| 1053 |
+
num_channels_latents,
|
| 1054 |
+
int(height) // self.vae_scale_factor,
|
| 1055 |
+
int(width) // self.vae_scale_factor,
|
| 1056 |
+
)
|
| 1057 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 1058 |
+
raise ValueError(
|
| 1059 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 1060 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
if latents is None:
|
| 1064 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 1065 |
+
else:
|
| 1066 |
+
latents = latents.to(device)
|
| 1067 |
+
|
| 1068 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 1069 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 1070 |
+
return latents
|
| 1071 |
+
|
| 1072 |
+
def _get_add_time_ids(
|
| 1073 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
| 1074 |
+
):
|
| 1075 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
| 1076 |
+
|
| 1077 |
+
passed_add_embed_dim = (
|
| 1078 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
| 1079 |
+
)
|
| 1080 |
+
expected_add_embed_dim = self.unet.base_add_embedding.linear_1.in_features
|
| 1081 |
+
|
| 1082 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 1083 |
+
raise ValueError(
|
| 1084 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 1085 |
+
)
|
| 1086 |
+
|
| 1087 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 1088 |
+
return add_time_ids
|
| 1089 |
+
|
| 1090 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1091 |
+
def upcast_vae(self):
|
| 1092 |
+
dtype = self.vae.dtype
|
| 1093 |
+
self.vae.to(dtype=torch.float32)
|
| 1094 |
+
use_torch_2_0_or_xformers = isinstance(
|
| 1095 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1096 |
+
(
|
| 1097 |
+
AttnProcessor2_0,
|
| 1098 |
+
XFormersAttnProcessor,
|
| 1099 |
+
LoRAXFormersAttnProcessor,
|
| 1100 |
+
LoRAAttnProcessor2_0,
|
| 1101 |
+
),
|
| 1102 |
+
)
|
| 1103 |
+
# if xformers or torch_2_0 is used attention block does not need
|
| 1104 |
+
# to be in float32 which can save lots of memory
|
| 1105 |
+
if use_torch_2_0_or_xformers:
|
| 1106 |
+
self.vae.post_quant_conv.to(dtype)
|
| 1107 |
+
self.vae.decoder.conv_in.to(dtype)
|
| 1108 |
+
self.vae.decoder.mid_block.to(dtype)
|
| 1109 |
+
|
| 1110 |
+
@property
|
| 1111 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale
|
| 1112 |
+
def guidance_scale(self):
|
| 1113 |
+
return self._guidance_scale
|
| 1114 |
+
|
| 1115 |
+
@property
|
| 1116 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.clip_skip
|
| 1117 |
+
def clip_skip(self):
|
| 1118 |
+
return self._clip_skip
|
| 1119 |
+
|
| 1120 |
+
@property
|
| 1121 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
|
| 1122 |
+
def do_classifier_free_guidance(self):
|
| 1123 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
| 1124 |
+
|
| 1125 |
+
@property
|
| 1126 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.cross_attention_kwargs
|
| 1127 |
+
def cross_attention_kwargs(self):
|
| 1128 |
+
return self._cross_attention_kwargs
|
| 1129 |
+
|
| 1130 |
+
@property
|
| 1131 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.num_timesteps
|
| 1132 |
+
def num_timesteps(self):
|
| 1133 |
+
return self._num_timesteps
|
| 1134 |
+
|
| 1135 |
+
def load_ip_adapter(self, image_proj_model, cross_attn_path=None, image_emb_dim=512, num_tokens=16, device='cuda', dtype=torch.float16):
|
| 1136 |
+
self.set_image_proj_model(image_proj_model, image_emb_dim, num_tokens, device=device, dtype=dtype)
|
| 1137 |
+
if cross_attn_path != None:
|
| 1138 |
+
self.set_cross_attn(cross_attn_path, num_tokens)
|
| 1139 |
+
|
| 1140 |
+
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16, device='cuda', dtype=torch.float16):
|
| 1141 |
+
|
| 1142 |
+
image_proj_model = Resampler(
|
| 1143 |
+
dim=1280,
|
| 1144 |
+
depth=4,
|
| 1145 |
+
dim_head=64,
|
| 1146 |
+
heads=20,
|
| 1147 |
+
num_queries=num_tokens,
|
| 1148 |
+
embedding_dim=image_emb_dim,
|
| 1149 |
+
output_dim=self.unet.config.cross_attention_dim,
|
| 1150 |
+
ff_mult=4,
|
| 1151 |
+
)
|
| 1152 |
+
|
| 1153 |
+
image_proj_model.eval()
|
| 1154 |
+
|
| 1155 |
+
self.image_proj_model = image_proj_model.to(device, dtype=dtype)
|
| 1156 |
+
|
| 1157 |
+
print('**************************** Loading image projection Model ***************************')
|
| 1158 |
+
if isinstance(model_ckpt, collections.OrderedDict):
|
| 1159 |
+
# print('Loading from state dict...')
|
| 1160 |
+
state_dict = model_ckpt
|
| 1161 |
+
elif isinstance(model_ckpt, str):
|
| 1162 |
+
# print(f'Loading state dict from {model_ckpt} ...')
|
| 1163 |
+
# state_dict = torch.load(model_ckpt, map_location="cpu", weights_only=True)
|
| 1164 |
+
state_dict = torch.load(model_ckpt, map_location="cpu", weights_only=True)
|
| 1165 |
+
else:
|
| 1166 |
+
raise TypeError("model_ckpt must be either an OrderedDict or a string (file path).")
|
| 1167 |
+
|
| 1168 |
+
if isinstance(state_dict, tuple):
|
| 1169 |
+
print("\n\n\n state_dict is a tuple \n\n\n")
|
| 1170 |
+
state_dict = state_dict[0]
|
| 1171 |
+
|
| 1172 |
+
self.image_proj_model.load_state_dict(state_dict)
|
| 1173 |
+
|
| 1174 |
+
self.image_proj_model_in_features = image_emb_dim
|
| 1175 |
+
|
| 1176 |
+
del state_dict
|
| 1177 |
+
gc.collect()
|
| 1178 |
+
|
| 1179 |
+
def set_cross_attn(self, cross_attn_path, num_tokens):
|
| 1180 |
+
|
| 1181 |
+
print('**************************** Setting cross attention processors to UNet ***************************')
|
| 1182 |
+
|
| 1183 |
+
# self.unet # 此时unet就是cnxs
|
| 1184 |
+
datatype = self.unet.dtype
|
| 1185 |
+
|
| 1186 |
+
state_dict = torch.load(cross_attn_path, map_location="cpu", weights_only=True)
|
| 1187 |
+
attn_state_dict = {}
|
| 1188 |
+
for key, value in state_dict.items():
|
| 1189 |
+
if 'attn2.processor' in key:
|
| 1190 |
+
attn_state_dict[key] = value
|
| 1191 |
+
|
| 1192 |
+
attn_procs = {}
|
| 1193 |
+
for name in self.unet.attn_processors.keys():
|
| 1194 |
+
if 'ctrl' in name:
|
| 1195 |
+
continue
|
| 1196 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
|
| 1197 |
+
if name.startswith("mid_block"):
|
| 1198 |
+
hidden_size = self.unet.config.block_out_channels[-1]
|
| 1199 |
+
elif name.startswith("up_blocks"):
|
| 1200 |
+
block_id = int(name[len("up_blocks.")])
|
| 1201 |
+
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
|
| 1202 |
+
elif name.startswith("down_blocks"):
|
| 1203 |
+
block_id = int(name[len("down_blocks.")])
|
| 1204 |
+
hidden_size = self.unet.config.block_out_channels[block_id]
|
| 1205 |
+
|
| 1206 |
+
if cross_attention_dim is None:
|
| 1207 |
+
attn_procs[name] = AttnProcessor()
|
| 1208 |
+
else:
|
| 1209 |
+
weights = {
|
| 1210 |
+
"to_k_ip.weight": attn_state_dict[name + ".to_k_ip.weight"],
|
| 1211 |
+
"to_v_ip.weight": attn_state_dict[name + ".to_v_ip.weight"],
|
| 1212 |
+
}
|
| 1213 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=num_tokens)
|
| 1214 |
+
attn_procs[name].load_state_dict(weights)
|
| 1215 |
+
|
| 1216 |
+
# print('length of attn_procs:', len(attn_procs)) # 140
|
| 1217 |
+
self.unet.set_attn_processor_unet(attn_procs)
|
| 1218 |
+
self.unet.to(dtype=datatype)
|
| 1219 |
+
|
| 1220 |
+
del attn_state_dict
|
| 1221 |
+
del attn_procs
|
| 1222 |
+
gc.collect()
|
| 1223 |
+
|
| 1224 |
+
def set_ip_adapter_scale(self, scale):
|
| 1225 |
+
unet = self.unet
|
| 1226 |
+
for attn_processor in unet.attn_processors_unet.values():
|
| 1227 |
+
# print(attn_processor)
|
| 1228 |
+
'''
|
| 1229 |
+
Attention(
|
| 1230 |
+
(to_q): Linear(in_features=640, out_features=640, bias=False)
|
| 1231 |
+
(to_k): Linear(in_features=2048, out_features=640, bias=False)
|
| 1232 |
+
(to_v): Linear(in_features=2048, out_features=640, bias=False)
|
| 1233 |
+
(to_out): ModuleList(
|
| 1234 |
+
(0): Linear(in_features=640, out_features=640, bias=True)
|
| 1235 |
+
(1): Dropout(p=0.0, inplace=False)
|
| 1236 |
+
)
|
| 1237 |
+
(processor): IPAttnProcessor2_0(
|
| 1238 |
+
(to_k_ip): Linear(in_features=2048, out_features=640, bias=False)
|
| 1239 |
+
(to_v_ip): Linear(in_features=2048, out_features=640, bias=False)
|
| 1240 |
+
)
|
| 1241 |
+
)
|
| 1242 |
+
'''
|
| 1243 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
| 1244 |
+
# print('set_ip_adapter_scale: ',scale)
|
| 1245 |
+
attn_processor.scale = scale
|
| 1246 |
+
|
| 1247 |
+
def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
|
| 1248 |
+
|
| 1249 |
+
if isinstance(prompt_image_emb, torch.Tensor):
|
| 1250 |
+
prompt_image_emb = prompt_image_emb.clone().detach()
|
| 1251 |
+
else:
|
| 1252 |
+
prompt_image_emb = torch.tensor(prompt_image_emb)
|
| 1253 |
+
|
| 1254 |
+
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
|
| 1255 |
+
|
| 1256 |
+
if do_classifier_free_guidance:
|
| 1257 |
+
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
| 1258 |
+
else:
|
| 1259 |
+
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
| 1260 |
+
|
| 1261 |
+
prompt_image_emb = prompt_image_emb.to(device=self.image_proj_model.latents.device,
|
| 1262 |
+
dtype=self.image_proj_model.latents.dtype)
|
| 1263 |
+
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
| 1264 |
+
|
| 1265 |
+
bs_embed, seq_len, _ = prompt_image_emb.shape
|
| 1266 |
+
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
|
| 1267 |
+
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 1268 |
+
|
| 1269 |
+
return prompt_image_emb.to(device=device, dtype=dtype)
|
| 1270 |
+
|
| 1271 |
+
def load_lora_weights(
|
| 1272 |
+
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
|
| 1273 |
+
):
|
| 1274 |
+
if not USE_PEFT_BACKEND:
|
| 1275 |
+
raise ValueError("PEFT backend is required for this method.")
|
| 1276 |
+
|
| 1277 |
+
# if a dict is passed, copy it instead of modifying it inplace
|
| 1278 |
+
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
| 1279 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
| 1280 |
+
|
| 1281 |
+
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
| 1282 |
+
if isinstance(pretrained_model_name_or_path_or_dict, str):
|
| 1283 |
+
filename = os.path.basename(pretrained_model_name_or_path_or_dict)
|
| 1284 |
+
extension = os.path.splitext(filename)[1]
|
| 1285 |
+
extension = extension[1:]
|
| 1286 |
+
if extension == "safetensors":
|
| 1287 |
+
lora_weight = load_file(pretrained_model_name_or_path_or_dict)
|
| 1288 |
+
else:
|
| 1289 |
+
lora_weight = torch.load(pretrained_model_name_or_path_or_dict, map_location="cpu")
|
| 1290 |
+
|
| 1291 |
+
if all(
|
| 1292 |
+
(
|
| 1293 |
+
k.startswith("lora_te_")
|
| 1294 |
+
or k.startswith("lora_unet_")
|
| 1295 |
+
or k.startswith("lora_te1_")
|
| 1296 |
+
or k.startswith("lora_te2_")
|
| 1297 |
+
)
|
| 1298 |
+
for k in lora_weight.keys()
|
| 1299 |
+
):
|
| 1300 |
+
state_dict = _maybe_map_sgm_blocks_to_diffusers(lora_weight, self.org_unet_config)
|
| 1301 |
+
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
|
| 1302 |
+
state_dict = get_module_kohya_state_dict_xs(state_dict, torch.float16)
|
| 1303 |
+
state_dict, _ = self.lora_state_dict(state_dict, **kwargs)
|
| 1304 |
+
else:
|
| 1305 |
+
state_dict = get_module_kohya_state_dict_xs(lora_weight, torch.float16)
|
| 1306 |
+
state_dict, network_alphas = self.lora_state_dict(state_dict, **kwargs)
|
| 1307 |
+
else:
|
| 1308 |
+
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
is_correct_format = all("lora" in key for key in state_dict.keys())
|
| 1312 |
+
if not is_correct_format:
|
| 1313 |
+
raise ValueError("Invalid LoRA checkpoint.")
|
| 1314 |
+
|
| 1315 |
+
low_cpu_mem_usage = False
|
| 1316 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 1317 |
+
|
| 1318 |
+
if is_torch_higher_equal_2_1:
|
| 1319 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
| 1320 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
| 1321 |
+
|
| 1322 |
+
assert is_torch_higher_equal_2_1 == low_cpu_mem_usage
|
| 1323 |
+
|
| 1324 |
+
self.load_lora_into_unet(
|
| 1325 |
+
state_dict,
|
| 1326 |
+
network_alphas=network_alphas,
|
| 1327 |
+
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
|
| 1328 |
+
adapter_name=adapter_name,
|
| 1329 |
+
_pipeline=self,
|
| 1330 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
| 1331 |
+
)
|
| 1332 |
+
self.load_lora_into_text_encoder(
|
| 1333 |
+
state_dict,
|
| 1334 |
+
network_alphas=network_alphas,
|
| 1335 |
+
text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, "text_encoder") else self.text_encoder,
|
| 1336 |
+
lora_scale=self.lora_scale,
|
| 1337 |
+
adapter_name=adapter_name,
|
| 1338 |
+
_pipeline=self,
|
| 1339 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
| 1340 |
+
)
|
| 1341 |
+
|
| 1342 |
+
def set_adapters(
|
| 1343 |
+
self,
|
| 1344 |
+
adapter_names: Union[List[str], str],
|
| 1345 |
+
adapter_weights: Optional[Union[List[float], float]] = None,
|
| 1346 |
+
):
|
| 1347 |
+
"""
|
| 1348 |
+
Set the currently active adapters for use in the UNet.
|
| 1349 |
+
|
| 1350 |
+
Args:
|
| 1351 |
+
adapter_names (`List[str]` or `str`):
|
| 1352 |
+
The names of the adapters to use.
|
| 1353 |
+
adapter_weights (`Union[List[float], float]`, *optional*):
|
| 1354 |
+
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
| 1355 |
+
adapters.
|
| 1356 |
+
|
| 1357 |
+
Example:
|
| 1358 |
+
|
| 1359 |
+
```py
|
| 1360 |
+
from diffusers import AutoPipelineForText2Image
|
| 1361 |
+
import torch
|
| 1362 |
+
|
| 1363 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 1364 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
| 1365 |
+
).to("cuda")
|
| 1366 |
+
pipeline.load_lora_weights(
|
| 1367 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
| 1368 |
+
)
|
| 1369 |
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
| 1370 |
+
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
| 1371 |
+
```
|
| 1372 |
+
"""
|
| 1373 |
+
|
| 1374 |
+
if not USE_PEFT_BACKEND:
|
| 1375 |
+
raise ValueError("PEFT backend is required for `set_adapters()`.")
|
| 1376 |
+
|
| 1377 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
| 1378 |
+
|
| 1379 |
+
if adapter_weights is None:
|
| 1380 |
+
adapter_weights = [1.0] * len(adapter_names)
|
| 1381 |
+
elif isinstance(adapter_weights, float):
|
| 1382 |
+
adapter_weights = [adapter_weights] * len(adapter_names)
|
| 1383 |
+
|
| 1384 |
+
if len(adapter_names) != len(adapter_weights):
|
| 1385 |
+
raise ValueError(
|
| 1386 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(adapter_weights)}."
|
| 1387 |
+
)
|
| 1388 |
+
|
| 1389 |
+
set_weights_and_activate_adapters(self.unet, adapter_names, adapter_weights)
|
| 1390 |
+
|
| 1391 |
+
'''
|
| 1392 |
+
def disable_lora(self):
|
| 1393 |
+
"""
|
| 1394 |
+
Disable the UNet's active LoRA layers.
|
| 1395 |
+
|
| 1396 |
+
Example:
|
| 1397 |
+
|
| 1398 |
+
```py
|
| 1399 |
+
from diffusers import AutoPipelineForText2Image
|
| 1400 |
+
import torch
|
| 1401 |
+
|
| 1402 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 1403 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
| 1404 |
+
).to("cuda")
|
| 1405 |
+
pipeline.load_lora_weights(
|
| 1406 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
| 1407 |
+
)
|
| 1408 |
+
pipeline.disable_lora()
|
| 1409 |
+
```
|
| 1410 |
+
"""
|
| 1411 |
+
if not USE_PEFT_BACKEND:
|
| 1412 |
+
raise ValueError("PEFT backend is required for this method.")
|
| 1413 |
+
set_adapter_layers(self.unet, enabled=False)
|
| 1414 |
+
|
| 1415 |
+
def enable_lora(self):
|
| 1416 |
+
"""
|
| 1417 |
+
Enable the UNet's active LoRA layers.
|
| 1418 |
+
|
| 1419 |
+
Example:
|
| 1420 |
+
|
| 1421 |
+
```py
|
| 1422 |
+
from diffusers import AutoPipelineForText2Image
|
| 1423 |
+
import torch
|
| 1424 |
+
|
| 1425 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 1426 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
| 1427 |
+
).to("cuda")
|
| 1428 |
+
pipeline.load_lora_weights(
|
| 1429 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
| 1430 |
+
)
|
| 1431 |
+
pipeline.enable_lora()
|
| 1432 |
+
```
|
| 1433 |
+
"""
|
| 1434 |
+
if not USE_PEFT_BACKEND:
|
| 1435 |
+
raise ValueError("PEFT backend is required for this method.")
|
| 1436 |
+
set_adapter_layers(self.unet, enabled=True)
|
| 1437 |
+
|
| 1438 |
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
| 1439 |
+
"""
|
| 1440 |
+
Delete an adapter's LoRA layers from the UNet.
|
| 1441 |
+
|
| 1442 |
+
Args:
|
| 1443 |
+
adapter_names (`Union[List[str], str]`):
|
| 1444 |
+
The names (single string or list of strings) of the adapter to delete.
|
| 1445 |
+
|
| 1446 |
+
Example:
|
| 1447 |
+
|
| 1448 |
+
```py
|
| 1449 |
+
from diffusers import AutoPipelineForText2Image
|
| 1450 |
+
import torch
|
| 1451 |
+
|
| 1452 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 1453 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
| 1454 |
+
).to("cuda")
|
| 1455 |
+
pipeline.load_lora_weights(
|
| 1456 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
| 1457 |
+
)
|
| 1458 |
+
pipeline.delete_adapters("cinematic")
|
| 1459 |
+
```
|
| 1460 |
+
"""
|
| 1461 |
+
if not USE_PEFT_BACKEND:
|
| 1462 |
+
raise ValueError("PEFT backend is required for this method.")
|
| 1463 |
+
|
| 1464 |
+
if isinstance(adapter_names, str):
|
| 1465 |
+
adapter_names = [adapter_names]
|
| 1466 |
+
|
| 1467 |
+
for adapter_name in adapter_names:
|
| 1468 |
+
delete_adapter_layers(self.unet, adapter_name)
|
| 1469 |
+
|
| 1470 |
+
# Pop also the corresponding adapter from the config
|
| 1471 |
+
if hasattr(self.unet, "peft_config"):
|
| 1472 |
+
self.unet.peft_config.pop(adapter_name, None)
|
| 1473 |
+
'''
|
| 1474 |
+
|
| 1475 |
+
@torch.no_grad()
|
| 1476 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 1477 |
+
def __call__(
|
| 1478 |
+
self,
|
| 1479 |
+
prompt: Union[str, List[str]] = None,
|
| 1480 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1481 |
+
image: PipelineImageInput = None,
|
| 1482 |
+
face_emb: Optional[torch.Tensor] = None,
|
| 1483 |
+
height: Optional[int] = None,
|
| 1484 |
+
width: Optional[int] = None,
|
| 1485 |
+
num_inference_steps: int = 50,
|
| 1486 |
+
guidance_scale: float = 5.0,
|
| 1487 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1488 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1489 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1490 |
+
eta: float = 0.0,
|
| 1491 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1492 |
+
latents: Optional[torch.Tensor] = None,
|
| 1493 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 1494 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1495 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1496 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1497 |
+
output_type: Optional[str] = "pil",
|
| 1498 |
+
return_dict: bool = True,
|
| 1499 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1500 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
| 1501 |
+
control_guidance_start: float = 0.0,
|
| 1502 |
+
control_guidance_end: float = 1.0,
|
| 1503 |
+
original_size: Tuple[int, int] = None,
|
| 1504 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1505 |
+
target_size: Tuple[int, int] = None,
|
| 1506 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
| 1507 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1508 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 1509 |
+
clip_skip: Optional[int] = None,
|
| 1510 |
+
callback_on_step_end: Optional[
|
| 1511 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 1512 |
+
] = None,
|
| 1513 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1514 |
+
|
| 1515 |
+
# IP adapter
|
| 1516 |
+
ip_adapter_scale=None,
|
| 1517 |
+
):
|
| 1518 |
+
r"""
|
| 1519 |
+
The call function to the pipeline for generation.
|
| 1520 |
+
|
| 1521 |
+
Args:
|
| 1522 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 1523 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 1524 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 1525 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 1526 |
+
used in both text-encoders.
|
| 1527 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 1528 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 1529 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 1530 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
| 1531 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
| 1532 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
| 1533 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
| 1534 |
+
to a single ControlNet.
|
| 1535 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1536 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 1537 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1538 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1539 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1540 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 1541 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1542 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1543 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1544 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1545 |
+
expense of slower inference.
|
| 1546 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 1547 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 1548 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 1549 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1550 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 1551 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 1552 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 1553 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
| 1554 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
| 1555 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1556 |
+
The number of images to generate per prompt.
|
| 1557 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1558 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 1559 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 1560 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1561 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 1562 |
+
generation deterministic.
|
| 1563 |
+
latents (`torch.Tensor`, *optional*):
|
| 1564 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 1565 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1566 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 1567 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 1568 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 1569 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 1570 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1571 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1572 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 1573 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1574 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1575 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
| 1576 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1577 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
| 1578 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
| 1579 |
+
argument.
|
| 1580 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1581 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 1582 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1583 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1584 |
+
plain tuple.
|
| 1585 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1586 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 1587 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1588 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 1589 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 1590 |
+
to the residual in the original `unet`.
|
| 1591 |
+
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
| 1592 |
+
The percentage of total steps at which the ControlNet starts applying.
|
| 1593 |
+
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
| 1594 |
+
The percentage of total steps at which the ControlNet stops applying.
|
| 1595 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1596 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 1597 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
| 1598 |
+
explained in section 2.2 of
|
| 1599 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1600 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1601 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 1602 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 1603 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1604 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1605 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1606 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 1607 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
| 1608 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1609 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1610 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
| 1611 |
+
micro-conditioning as explained in section 2.2 of
|
| 1612 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1613 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1614 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1615 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
| 1616 |
+
micro-conditioning as explained in section 2.2 of
|
| 1617 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1618 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1619 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1620 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
| 1621 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1622 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1623 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1624 |
+
clip_skip (`int`, *optional*):
|
| 1625 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1626 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1627 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 1628 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 1629 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 1630 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1631 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 1632 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1633 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1634 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1635 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
| 1636 |
+
|
| 1637 |
+
Examples:
|
| 1638 |
+
|
| 1639 |
+
Returns:
|
| 1640 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 1641 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] is
|
| 1642 |
+
returned, otherwise a `tuple` is returned containing the output images.
|
| 1643 |
+
"""
|
| 1644 |
+
|
| 1645 |
+
lpw = LongPromptWeight()
|
| 1646 |
+
|
| 1647 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 1648 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 1649 |
+
|
| 1650 |
+
unet = self.unet._orig_mod if is_compiled_module(self.unet) else self.unet
|
| 1651 |
+
|
| 1652 |
+
# 0. set ip_adapter_scale
|
| 1653 |
+
if ip_adapter_scale is not None:
|
| 1654 |
+
self.set_ip_adapter_scale(ip_adapter_scale)
|
| 1655 |
+
|
| 1656 |
+
# 1. Check inputs. Raise error if not correct
|
| 1657 |
+
self.check_inputs(
|
| 1658 |
+
prompt,
|
| 1659 |
+
prompt_2,
|
| 1660 |
+
image,
|
| 1661 |
+
negative_prompt,
|
| 1662 |
+
negative_prompt_2,
|
| 1663 |
+
prompt_embeds,
|
| 1664 |
+
negative_prompt_embeds,
|
| 1665 |
+
pooled_prompt_embeds,
|
| 1666 |
+
negative_pooled_prompt_embeds,
|
| 1667 |
+
controlnet_conditioning_scale,
|
| 1668 |
+
control_guidance_start,
|
| 1669 |
+
control_guidance_end,
|
| 1670 |
+
callback_on_step_end_tensor_inputs,
|
| 1671 |
+
)
|
| 1672 |
+
|
| 1673 |
+
self._guidance_scale = guidance_scale
|
| 1674 |
+
self._clip_skip = clip_skip
|
| 1675 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1676 |
+
self._interrupt = False
|
| 1677 |
+
|
| 1678 |
+
# 2. Define call parameters
|
| 1679 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1680 |
+
batch_size = 1
|
| 1681 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1682 |
+
batch_size = len(prompt)
|
| 1683 |
+
else:
|
| 1684 |
+
batch_size = prompt_embeds.shape[0]
|
| 1685 |
+
|
| 1686 |
+
device = self._execution_device
|
| 1687 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1688 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1689 |
+
# corresponds to doing no classifier free guidance.
|
| 1690 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1691 |
+
|
| 1692 |
+
# 3. Encode input prompt
|
| 1693 |
+
|
| 1694 |
+
# text_encoder_lora_scale = (
|
| 1695 |
+
# self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 1696 |
+
# )
|
| 1697 |
+
# (
|
| 1698 |
+
# prompt_embeds,
|
| 1699 |
+
# negative_prompt_embeds,
|
| 1700 |
+
# pooled_prompt_embeds,
|
| 1701 |
+
# negative_pooled_prompt_embeds,
|
| 1702 |
+
# ) = self.encode_prompt(
|
| 1703 |
+
# prompt,
|
| 1704 |
+
# prompt_2,
|
| 1705 |
+
# device,
|
| 1706 |
+
# num_images_per_prompt,
|
| 1707 |
+
# do_classifier_free_guidance,
|
| 1708 |
+
# negative_prompt,
|
| 1709 |
+
# negative_prompt_2,
|
| 1710 |
+
# prompt_embeds=prompt_embeds,
|
| 1711 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 1712 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1713 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1714 |
+
# lora_scale=text_encoder_lora_scale,
|
| 1715 |
+
# clip_skip=clip_skip,
|
| 1716 |
+
# )
|
| 1717 |
+
|
| 1718 |
+
(
|
| 1719 |
+
prompt_embeds,
|
| 1720 |
+
negative_prompt_embeds,
|
| 1721 |
+
pooled_prompt_embeds,
|
| 1722 |
+
negative_pooled_prompt_embeds,
|
| 1723 |
+
) = lpw.get_weighted_text_embeddings_sdxl(
|
| 1724 |
+
pipe=self,
|
| 1725 |
+
prompt=prompt,
|
| 1726 |
+
neg_prompt=negative_prompt,
|
| 1727 |
+
prompt_embeds=prompt_embeds,
|
| 1728 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1729 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1730 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1731 |
+
)
|
| 1732 |
+
prompt_image_emb = self._encode_prompt_image_emb(
|
| 1733 |
+
face_emb,
|
| 1734 |
+
device,
|
| 1735 |
+
num_images_per_prompt,
|
| 1736 |
+
unet.dtype,
|
| 1737 |
+
do_classifier_free_guidance
|
| 1738 |
+
)
|
| 1739 |
+
|
| 1740 |
+
# 4. Prepare image
|
| 1741 |
+
if isinstance(unet, UNetControlNetXSModel):
|
| 1742 |
+
image = self.prepare_image(
|
| 1743 |
+
image=image,
|
| 1744 |
+
width=width,
|
| 1745 |
+
height=height,
|
| 1746 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 1747 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1748 |
+
device=device,
|
| 1749 |
+
dtype=unet.dtype,
|
| 1750 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 1751 |
+
)
|
| 1752 |
+
height, width = image.shape[-2:]
|
| 1753 |
+
else:
|
| 1754 |
+
assert False
|
| 1755 |
+
|
| 1756 |
+
# 5. Prepare timesteps
|
| 1757 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 1758 |
+
timesteps = self.scheduler.timesteps
|
| 1759 |
+
|
| 1760 |
+
# 6. Prepare latent variables
|
| 1761 |
+
num_channels_latents = self.unet.in_channels
|
| 1762 |
+
latents = self.prepare_latents(
|
| 1763 |
+
batch_size * num_images_per_prompt,
|
| 1764 |
+
num_channels_latents,
|
| 1765 |
+
height,
|
| 1766 |
+
width,
|
| 1767 |
+
prompt_embeds.dtype,
|
| 1768 |
+
device,
|
| 1769 |
+
generator,
|
| 1770 |
+
latents,
|
| 1771 |
+
)
|
| 1772 |
+
|
| 1773 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1774 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1775 |
+
|
| 1776 |
+
# 7.1 Prepare added time ids & embeddings
|
| 1777 |
+
if isinstance(image, list):
|
| 1778 |
+
original_size = original_size or image[0].shape[-2:]
|
| 1779 |
+
else:
|
| 1780 |
+
original_size = original_size or image.shape[-2:]
|
| 1781 |
+
target_size = target_size or (height, width)
|
| 1782 |
+
|
| 1783 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1784 |
+
if self.text_encoder_2 is None:
|
| 1785 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 1786 |
+
else:
|
| 1787 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
| 1788 |
+
|
| 1789 |
+
add_time_ids = self._get_add_time_ids(
|
| 1790 |
+
original_size,
|
| 1791 |
+
crops_coords_top_left,
|
| 1792 |
+
target_size,
|
| 1793 |
+
dtype=prompt_embeds.dtype,
|
| 1794 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1795 |
+
)
|
| 1796 |
+
|
| 1797 |
+
if negative_original_size is not None and negative_target_size is not None:
|
| 1798 |
+
negative_add_time_ids = self._get_add_time_ids(
|
| 1799 |
+
negative_original_size,
|
| 1800 |
+
negative_crops_coords_top_left,
|
| 1801 |
+
negative_target_size,
|
| 1802 |
+
dtype=prompt_embeds.dtype,
|
| 1803 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1804 |
+
)
|
| 1805 |
+
else:
|
| 1806 |
+
negative_add_time_ids = add_time_ids
|
| 1807 |
+
|
| 1808 |
+
if do_classifier_free_guidance:
|
| 1809 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1810 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 1811 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
| 1812 |
+
|
| 1813 |
+
prompt_embeds = prompt_embeds.to(device, dtype=unet.dtype)
|
| 1814 |
+
add_text_embeds = add_text_embeds.to(device, dtype=unet.dtype)
|
| 1815 |
+
add_time_ids = add_time_ids.to(device, dtype=unet.dtype).repeat(batch_size * num_images_per_prompt, 1)
|
| 1816 |
+
|
| 1817 |
+
prompt_image_emb = prompt_image_emb.to(device, dtype=unet.dtype)
|
| 1818 |
+
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
| 1819 |
+
encoder_hidden_states = encoder_hidden_states.to(device, dtype=unet.dtype)
|
| 1820 |
+
|
| 1821 |
+
|
| 1822 |
+
# 8. Denoising loop
|
| 1823 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1824 |
+
self._num_timesteps = len(timesteps)
|
| 1825 |
+
is_controlnet_compiled = is_compiled_module(self.unet)
|
| 1826 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 1827 |
+
|
| 1828 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1829 |
+
for i, t in enumerate(timesteps):
|
| 1830 |
+
# Relevant thread:
|
| 1831 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
| 1832 |
+
if is_controlnet_compiled and is_torch_higher_equal_2_1:
|
| 1833 |
+
torch._inductor.cudagraph_mark_step_begin()
|
| 1834 |
+
# expand the latents if we are doing classifier free guidance
|
| 1835 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1836 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1837 |
+
|
| 1838 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 1839 |
+
|
| 1840 |
+
# predict the noise residual
|
| 1841 |
+
apply_control = (
|
| 1842 |
+
i / len(timesteps) >= control_guidance_start and (i + 1) / len(timesteps) <= control_guidance_end
|
| 1843 |
+
)
|
| 1844 |
+
|
| 1845 |
+
noise_pred = self.unet(
|
| 1846 |
+
sample=latent_model_input,
|
| 1847 |
+
timestep=t,
|
| 1848 |
+
unet_encoder_hidden_states=encoder_hidden_states,
|
| 1849 |
+
cnxs_encoder_hidden_states=prompt_image_emb,
|
| 1850 |
+
controlnet_cond=image,
|
| 1851 |
+
conditioning_scale=controlnet_conditioning_scale,
|
| 1852 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1853 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1854 |
+
return_dict=True,
|
| 1855 |
+
apply_control=apply_control,
|
| 1856 |
+
).sample
|
| 1857 |
+
|
| 1858 |
+
# perform guidance
|
| 1859 |
+
if do_classifier_free_guidance:
|
| 1860 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1861 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1862 |
+
|
| 1863 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1864 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1865 |
+
|
| 1866 |
+
if callback_on_step_end is not None:
|
| 1867 |
+
callback_kwargs = {}
|
| 1868 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1869 |
+
callback_kwargs[k] = locals()[k]
|
| 1870 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1871 |
+
|
| 1872 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1873 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1874 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1875 |
+
|
| 1876 |
+
# call the callback, if provided
|
| 1877 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1878 |
+
progress_bar.update()
|
| 1879 |
+
|
| 1880 |
+
# manually for max memory savings
|
| 1881 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
| 1882 |
+
self.upcast_vae()
|
| 1883 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1884 |
+
|
| 1885 |
+
if not output_type == "latent":
|
| 1886 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1887 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1888 |
+
|
| 1889 |
+
if needs_upcasting:
|
| 1890 |
+
self.upcast_vae()
|
| 1891 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1892 |
+
|
| 1893 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1894 |
+
|
| 1895 |
+
# cast back to fp16 if needed
|
| 1896 |
+
if needs_upcasting:
|
| 1897 |
+
self.vae.to(dtype=torch.float16)
|
| 1898 |
+
else:
|
| 1899 |
+
image = latents
|
| 1900 |
+
|
| 1901 |
+
if not output_type == "latent":
|
| 1902 |
+
# apply watermark if available
|
| 1903 |
+
if self.watermark is not None:
|
| 1904 |
+
image = self.watermark.apply_watermark(image)
|
| 1905 |
+
|
| 1906 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1907 |
+
|
| 1908 |
+
# Offload all models
|
| 1909 |
+
self.maybe_free_model_hooks()
|
| 1910 |
+
|
| 1911 |
+
if not return_dict:
|
| 1912 |
+
return (image,)
|
| 1913 |
+
|
| 1914 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
utils/attention_processor.py
ADDED
|
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 6 |
+
from diffusers.models.attention_processor import XFormersAttnProcessor
|
| 7 |
+
try:
|
| 8 |
+
import xformers
|
| 9 |
+
import xformers.ops
|
| 10 |
+
xformers_available = True
|
| 11 |
+
except Exception as e:
|
| 12 |
+
xformers_available = False
|
| 13 |
+
|
| 14 |
+
class RegionControler(object):
|
| 15 |
+
def __init__(self) -> None:
|
| 16 |
+
self.prompt_image_conditioning = []
|
| 17 |
+
region_control = RegionControler()
|
| 18 |
+
|
| 19 |
+
class AttnProcessor(nn.Module):
|
| 20 |
+
r"""
|
| 21 |
+
Default processor for performing attention-related computations.
|
| 22 |
+
"""
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
hidden_size=None,
|
| 26 |
+
cross_attention_dim=None,
|
| 27 |
+
):
|
| 28 |
+
super().__init__()
|
| 29 |
+
|
| 30 |
+
def forward(
|
| 31 |
+
self,
|
| 32 |
+
attn,
|
| 33 |
+
hidden_states,
|
| 34 |
+
encoder_hidden_states=None,
|
| 35 |
+
attention_mask=None,
|
| 36 |
+
temb=None,
|
| 37 |
+
):
|
| 38 |
+
residual = hidden_states
|
| 39 |
+
|
| 40 |
+
if attn.spatial_norm is not None:
|
| 41 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 42 |
+
|
| 43 |
+
input_ndim = hidden_states.ndim
|
| 44 |
+
|
| 45 |
+
if input_ndim == 4:
|
| 46 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 47 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 48 |
+
|
| 49 |
+
batch_size, sequence_length, _ = (
|
| 50 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 51 |
+
)
|
| 52 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 53 |
+
|
| 54 |
+
if attn.group_norm is not None:
|
| 55 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 56 |
+
|
| 57 |
+
query = attn.to_q(hidden_states)
|
| 58 |
+
|
| 59 |
+
if encoder_hidden_states is None:
|
| 60 |
+
encoder_hidden_states = hidden_states
|
| 61 |
+
elif attn.norm_cross:
|
| 62 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 63 |
+
|
| 64 |
+
key = attn.to_k(encoder_hidden_states)
|
| 65 |
+
value = attn.to_v(encoder_hidden_states)
|
| 66 |
+
|
| 67 |
+
query = attn.head_to_batch_dim(query)
|
| 68 |
+
key = attn.head_to_batch_dim(key)
|
| 69 |
+
value = attn.head_to_batch_dim(value)
|
| 70 |
+
|
| 71 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 72 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 73 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 74 |
+
|
| 75 |
+
# linear proj
|
| 76 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 77 |
+
# dropout
|
| 78 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 79 |
+
|
| 80 |
+
if input_ndim == 4:
|
| 81 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 82 |
+
|
| 83 |
+
if attn.residual_connection:
|
| 84 |
+
hidden_states = hidden_states + residual
|
| 85 |
+
|
| 86 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 87 |
+
|
| 88 |
+
return hidden_states
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class IPAttnProcessor(nn.Module):
|
| 92 |
+
r"""
|
| 93 |
+
Attention processor for IP-Adapater.
|
| 94 |
+
Args:
|
| 95 |
+
hidden_size (`int`):
|
| 96 |
+
The hidden size of the attention layer.
|
| 97 |
+
cross_attention_dim (`int`):
|
| 98 |
+
The number of channels in the `encoder_hidden_states`.
|
| 99 |
+
scale (`float`, defaults to 1.0):
|
| 100 |
+
the weight scale of image prompt.
|
| 101 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 102 |
+
The context length of the image features.
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 106 |
+
super().__init__()
|
| 107 |
+
|
| 108 |
+
self.hidden_size = hidden_size
|
| 109 |
+
self.cross_attention_dim = cross_attention_dim
|
| 110 |
+
self.scale = scale
|
| 111 |
+
self.num_tokens = num_tokens
|
| 112 |
+
|
| 113 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 114 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 115 |
+
|
| 116 |
+
def forward(
|
| 117 |
+
self,
|
| 118 |
+
attn,
|
| 119 |
+
hidden_states,
|
| 120 |
+
encoder_hidden_states=None,
|
| 121 |
+
attention_mask=None,
|
| 122 |
+
temb=None,
|
| 123 |
+
):
|
| 124 |
+
residual = hidden_states
|
| 125 |
+
|
| 126 |
+
if attn.spatial_norm is not None:
|
| 127 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 128 |
+
|
| 129 |
+
input_ndim = hidden_states.ndim
|
| 130 |
+
|
| 131 |
+
if input_ndim == 4:
|
| 132 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 133 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 134 |
+
|
| 135 |
+
batch_size, sequence_length, _ = (
|
| 136 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 137 |
+
)
|
| 138 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 139 |
+
|
| 140 |
+
if attn.group_norm is not None:
|
| 141 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 142 |
+
|
| 143 |
+
query = attn.to_q(hidden_states)
|
| 144 |
+
|
| 145 |
+
if encoder_hidden_states is None:
|
| 146 |
+
encoder_hidden_states = hidden_states
|
| 147 |
+
else:
|
| 148 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 149 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 150 |
+
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
| 151 |
+
if attn.norm_cross:
|
| 152 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 153 |
+
|
| 154 |
+
key = attn.to_k(encoder_hidden_states)
|
| 155 |
+
value = attn.to_v(encoder_hidden_states)
|
| 156 |
+
|
| 157 |
+
query = attn.head_to_batch_dim(query)
|
| 158 |
+
key = attn.head_to_batch_dim(key)
|
| 159 |
+
value = attn.head_to_batch_dim(value)
|
| 160 |
+
|
| 161 |
+
if xformers_available:
|
| 162 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
| 163 |
+
else:
|
| 164 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 165 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 166 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 167 |
+
|
| 168 |
+
# for ip-adapter
|
| 169 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 170 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 171 |
+
|
| 172 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
| 173 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
| 174 |
+
|
| 175 |
+
if xformers_available:
|
| 176 |
+
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
| 177 |
+
else:
|
| 178 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
| 179 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
| 180 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
| 181 |
+
|
| 182 |
+
# region control
|
| 183 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
| 184 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 185 |
+
if region_mask is not None:
|
| 186 |
+
h, w = region_mask.shape[:2]
|
| 187 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
| 188 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
| 189 |
+
else:
|
| 190 |
+
mask = torch.ones_like(ip_hidden_states)
|
| 191 |
+
ip_hidden_states = ip_hidden_states * mask
|
| 192 |
+
|
| 193 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 194 |
+
|
| 195 |
+
# linear proj
|
| 196 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 197 |
+
# dropout
|
| 198 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 199 |
+
|
| 200 |
+
if input_ndim == 4:
|
| 201 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 202 |
+
|
| 203 |
+
if attn.residual_connection:
|
| 204 |
+
hidden_states = hidden_states + residual
|
| 205 |
+
|
| 206 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 207 |
+
|
| 208 |
+
return hidden_states
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
| 212 |
+
# TODO attention_mask
|
| 213 |
+
query = query.contiguous()
|
| 214 |
+
key = key.contiguous()
|
| 215 |
+
value = value.contiguous()
|
| 216 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 217 |
+
# hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 218 |
+
return hidden_states
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class AttnProcessor2_0(torch.nn.Module):
|
| 222 |
+
r"""
|
| 223 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 224 |
+
"""
|
| 225 |
+
def __init__(
|
| 226 |
+
self,
|
| 227 |
+
hidden_size=None,
|
| 228 |
+
cross_attention_dim=None,
|
| 229 |
+
):
|
| 230 |
+
super().__init__()
|
| 231 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 232 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 233 |
+
|
| 234 |
+
def forward(
|
| 235 |
+
self,
|
| 236 |
+
attn,
|
| 237 |
+
hidden_states,
|
| 238 |
+
encoder_hidden_states=None,
|
| 239 |
+
attention_mask=None,
|
| 240 |
+
temb=None,
|
| 241 |
+
):
|
| 242 |
+
residual = hidden_states
|
| 243 |
+
|
| 244 |
+
if attn.spatial_norm is not None:
|
| 245 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 246 |
+
|
| 247 |
+
input_ndim = hidden_states.ndim
|
| 248 |
+
|
| 249 |
+
if input_ndim == 4:
|
| 250 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 251 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 252 |
+
|
| 253 |
+
batch_size, sequence_length, _ = (
|
| 254 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if attention_mask is not None:
|
| 258 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 259 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 260 |
+
# (batch, heads, source_length, target_length)
|
| 261 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 262 |
+
|
| 263 |
+
if attn.group_norm is not None:
|
| 264 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 265 |
+
|
| 266 |
+
query = attn.to_q(hidden_states)
|
| 267 |
+
|
| 268 |
+
if encoder_hidden_states is None:
|
| 269 |
+
encoder_hidden_states = hidden_states
|
| 270 |
+
elif attn.norm_cross:
|
| 271 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 272 |
+
|
| 273 |
+
key = attn.to_k(encoder_hidden_states)
|
| 274 |
+
value = attn.to_v(encoder_hidden_states)
|
| 275 |
+
|
| 276 |
+
inner_dim = key.shape[-1]
|
| 277 |
+
head_dim = inner_dim // attn.heads
|
| 278 |
+
|
| 279 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 280 |
+
|
| 281 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 282 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 283 |
+
|
| 284 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 285 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 286 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 287 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 291 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 292 |
+
|
| 293 |
+
# linear proj
|
| 294 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 295 |
+
# dropout
|
| 296 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 297 |
+
|
| 298 |
+
if input_ndim == 4:
|
| 299 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 300 |
+
|
| 301 |
+
if attn.residual_connection:
|
| 302 |
+
hidden_states = hidden_states + residual
|
| 303 |
+
|
| 304 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 305 |
+
|
| 306 |
+
return hidden_states
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
| 310 |
+
r"""
|
| 311 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
| 312 |
+
Args:
|
| 313 |
+
hidden_size (`int`):
|
| 314 |
+
The hidden size of the attention layer.
|
| 315 |
+
cross_attention_dim (`int`):
|
| 316 |
+
The number of channels in the `encoder_hidden_states`.
|
| 317 |
+
scale (`float`, defaults to 1.0):
|
| 318 |
+
the weight scale of image prompt.
|
| 319 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 320 |
+
The context length of the image features.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 324 |
+
super().__init__()
|
| 325 |
+
|
| 326 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 327 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 328 |
+
|
| 329 |
+
self.hidden_size = hidden_size
|
| 330 |
+
self.cross_attention_dim = cross_attention_dim
|
| 331 |
+
self.scale = scale
|
| 332 |
+
self.num_tokens = num_tokens
|
| 333 |
+
|
| 334 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 335 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 336 |
+
|
| 337 |
+
def __call__(
|
| 338 |
+
self,
|
| 339 |
+
attn,
|
| 340 |
+
hidden_states,
|
| 341 |
+
encoder_hidden_states=None,
|
| 342 |
+
attention_mask=None,
|
| 343 |
+
temb=None,
|
| 344 |
+
):
|
| 345 |
+
# 保存输入的 hidden_states,用于最后的残差连接。
|
| 346 |
+
residual = hidden_states
|
| 347 |
+
# 检查是否有 空间归一化 (spatial normalization)
|
| 348 |
+
if attn.spatial_norm is not None:
|
| 349 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 350 |
+
|
| 351 |
+
# hidden_states 可能是一个 4D 张量(比如图像数据),也可能是一个 3D 张量(比如文本数据)
|
| 352 |
+
input_ndim = hidden_states.ndim
|
| 353 |
+
if input_ndim == 4:
|
| 354 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 355 |
+
# 调整其形状为 (batch_size, channel, height * width)
|
| 356 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 357 |
+
|
| 358 |
+
# 选择 encoder_hidden_states 如果有的话,否则使用 hidden_states 作为输入。sequence_length 表示序列长度,通常是时间步或图像的像素数量。
|
| 359 |
+
batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
|
| 360 |
+
|
| 361 |
+
# 处理并调整注意力掩码 (attention mask),使其符合 scaled_dot_product_attention 函数的要求。
|
| 362 |
+
if attention_mask is not None:
|
| 363 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 364 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 365 |
+
# (batch, heads, source_length, target_length)
|
| 366 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 367 |
+
|
| 368 |
+
# 对 hidden_states 进行组归一化
|
| 369 |
+
if attn.group_norm is not None:
|
| 370 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 371 |
+
|
| 372 |
+
# 通过线性变换将 hidden_states 映射到query向量
|
| 373 |
+
query = attn.to_q(hidden_states)
|
| 374 |
+
|
| 375 |
+
if encoder_hidden_states is None:
|
| 376 |
+
encoder_hidden_states = hidden_states
|
| 377 |
+
else:
|
| 378 |
+
# 分割 encoder_hidden_states 和 ip_hidden_states
|
| 379 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 380 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 381 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 382 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 383 |
+
)
|
| 384 |
+
if attn.norm_cross:
|
| 385 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 386 |
+
|
| 387 |
+
# 将 encoder_hidden_states 映射为多头自注意力计算中的键和值
|
| 388 |
+
key = attn.to_k(encoder_hidden_states)
|
| 389 |
+
value = attn.to_v(encoder_hidden_states)
|
| 390 |
+
|
| 391 |
+
# 获取每个注意力头的维度
|
| 392 |
+
inner_dim = key.shape[-1]
|
| 393 |
+
head_dim = inner_dim // attn.heads
|
| 394 |
+
|
| 395 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 396 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 397 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 398 |
+
|
| 399 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 400 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 401 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
|
| 402 |
+
# hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 403 |
+
|
| 404 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 405 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 406 |
+
|
| 407 |
+
# for ip-adapter
|
| 408 |
+
# 投影 ip_hidden_states 得到其键和值
|
| 409 |
+
|
| 410 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 411 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 412 |
+
|
| 413 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 414 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 415 |
+
|
| 416 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 417 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 418 |
+
# 注意力计算 得到图像提示的隐藏状态
|
| 419 |
+
ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
| 420 |
+
# ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, attn_bias=None)
|
| 421 |
+
|
| 422 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 423 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 424 |
+
|
| 425 |
+
# 通过给图像提示隐藏状态加权缩放后与原始隐藏状态相加,实现跨域信息融合
|
| 426 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 427 |
+
|
| 428 |
+
# linear proj
|
| 429 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 430 |
+
# dropout
|
| 431 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 432 |
+
|
| 433 |
+
if input_ndim == 4:
|
| 434 |
+
# 如果输入是 4D 张量(图像数据),则将 hidden_states 转换回原始形状。
|
| 435 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 436 |
+
|
| 437 |
+
if attn.residual_connection:
|
| 438 |
+
# 如果启用了残差连接,则将 residual 添加回 hidden_states
|
| 439 |
+
hidden_states = hidden_states + residual
|
| 440 |
+
|
| 441 |
+
# 对输出进行缩放
|
| 442 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 443 |
+
|
| 444 |
+
return hidden_states
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
## for controlnet
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
class CNAttnProcessor:
|
| 453 |
+
r"""
|
| 454 |
+
Default processor for performing attention-related computations.
|
| 455 |
+
"""
|
| 456 |
+
|
| 457 |
+
def __init__(self, num_tokens=4):
|
| 458 |
+
self.num_tokens = num_tokens
|
| 459 |
+
|
| 460 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs,):
|
| 461 |
+
residual = hidden_states
|
| 462 |
+
|
| 463 |
+
if attn.spatial_norm is not None:
|
| 464 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 465 |
+
|
| 466 |
+
input_ndim = hidden_states.ndim
|
| 467 |
+
|
| 468 |
+
if input_ndim == 4:
|
| 469 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 470 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 471 |
+
|
| 472 |
+
batch_size, sequence_length, _ = (
|
| 473 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 474 |
+
)
|
| 475 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 476 |
+
|
| 477 |
+
if attn.group_norm is not None:
|
| 478 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 479 |
+
|
| 480 |
+
query = attn.to_q(hidden_states)
|
| 481 |
+
|
| 482 |
+
if encoder_hidden_states is None:
|
| 483 |
+
encoder_hidden_states = hidden_states
|
| 484 |
+
else:
|
| 485 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 486 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
| 487 |
+
if attn.norm_cross:
|
| 488 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 489 |
+
|
| 490 |
+
key = attn.to_k(encoder_hidden_states)
|
| 491 |
+
value = attn.to_v(encoder_hidden_states)
|
| 492 |
+
|
| 493 |
+
query = attn.head_to_batch_dim(query)
|
| 494 |
+
key = attn.head_to_batch_dim(key)
|
| 495 |
+
value = attn.head_to_batch_dim(value)
|
| 496 |
+
|
| 497 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 498 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 499 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 500 |
+
|
| 501 |
+
# linear proj
|
| 502 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 503 |
+
# dropout
|
| 504 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 505 |
+
|
| 506 |
+
if input_ndim == 4:
|
| 507 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 508 |
+
|
| 509 |
+
if attn.residual_connection:
|
| 510 |
+
hidden_states = hidden_states + residual
|
| 511 |
+
|
| 512 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 513 |
+
|
| 514 |
+
return hidden_states
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class CNAttnProcessor2_0:
|
| 518 |
+
r"""
|
| 519 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 520 |
+
"""
|
| 521 |
+
|
| 522 |
+
def __init__(self, num_tokens=4):
|
| 523 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 524 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 525 |
+
self.num_tokens = num_tokens
|
| 526 |
+
|
| 527 |
+
def __call__(
|
| 528 |
+
self,
|
| 529 |
+
attn,
|
| 530 |
+
hidden_states,
|
| 531 |
+
encoder_hidden_states=None,
|
| 532 |
+
attention_mask=None,
|
| 533 |
+
temb=None,
|
| 534 |
+
*args,
|
| 535 |
+
**kwargs,
|
| 536 |
+
):
|
| 537 |
+
residual = hidden_states
|
| 538 |
+
|
| 539 |
+
if attn.spatial_norm is not None:
|
| 540 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 541 |
+
|
| 542 |
+
input_ndim = hidden_states.ndim
|
| 543 |
+
|
| 544 |
+
if input_ndim == 4:
|
| 545 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 546 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 547 |
+
|
| 548 |
+
batch_size, sequence_length, _ = (
|
| 549 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
if attention_mask is not None:
|
| 553 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 554 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 555 |
+
# (batch, heads, source_length, target_length)
|
| 556 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 557 |
+
|
| 558 |
+
if attn.group_norm is not None:
|
| 559 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 560 |
+
|
| 561 |
+
query = attn.to_q(hidden_states)
|
| 562 |
+
|
| 563 |
+
if encoder_hidden_states is None:
|
| 564 |
+
encoder_hidden_states = hidden_states
|
| 565 |
+
else:
|
| 566 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 567 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
| 568 |
+
if attn.norm_cross:
|
| 569 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 570 |
+
|
| 571 |
+
key = attn.to_k(encoder_hidden_states)
|
| 572 |
+
value = attn.to_v(encoder_hidden_states)
|
| 573 |
+
|
| 574 |
+
inner_dim = key.shape[-1]
|
| 575 |
+
head_dim = inner_dim // attn.heads
|
| 576 |
+
|
| 577 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 578 |
+
|
| 579 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 580 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 581 |
+
|
| 582 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 583 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 584 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 585 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 589 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 590 |
+
|
| 591 |
+
# linear proj
|
| 592 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 593 |
+
# dropout
|
| 594 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 595 |
+
|
| 596 |
+
if input_ndim == 4:
|
| 597 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 598 |
+
|
| 599 |
+
if attn.residual_connection:
|
| 600 |
+
hidden_states = hidden_states + residual
|
| 601 |
+
|
| 602 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 603 |
+
|
| 604 |
+
return hidden_states
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
class IPAttnProcessor2_02(torch.nn.Module):
|
| 609 |
+
r"""
|
| 610 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
| 611 |
+
Args:
|
| 612 |
+
hidden_size (`int`):
|
| 613 |
+
The hidden size of the attention layer.
|
| 614 |
+
cross_attention_dim (`int`):
|
| 615 |
+
The number of channels in the `encoder_hidden_states`.
|
| 616 |
+
scale (`float`, defaults to 1.0):
|
| 617 |
+
the weight scale of image prompt.
|
| 618 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 619 |
+
The context length of the image features.
|
| 620 |
+
"""
|
| 621 |
+
|
| 622 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 623 |
+
super().__init__()
|
| 624 |
+
|
| 625 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 626 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 627 |
+
|
| 628 |
+
self.hidden_size = hidden_size
|
| 629 |
+
self.cross_attention_dim = cross_attention_dim
|
| 630 |
+
self.scale = scale
|
| 631 |
+
self.num_tokens = num_tokens
|
| 632 |
+
|
| 633 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 634 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 635 |
+
|
| 636 |
+
def forward(
|
| 637 |
+
self,
|
| 638 |
+
attn,
|
| 639 |
+
hidden_states,
|
| 640 |
+
encoder_hidden_states=None,
|
| 641 |
+
attention_mask=None,
|
| 642 |
+
temb=None,
|
| 643 |
+
):
|
| 644 |
+
residual = hidden_states
|
| 645 |
+
|
| 646 |
+
if attn.spatial_norm is not None:
|
| 647 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 648 |
+
|
| 649 |
+
input_ndim = hidden_states.ndim
|
| 650 |
+
|
| 651 |
+
if input_ndim == 4:
|
| 652 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 653 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 654 |
+
|
| 655 |
+
batch_size, sequence_length, _ = (
|
| 656 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
if attention_mask is not None:
|
| 660 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 661 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 662 |
+
# (batch, heads, source_length, target_length)
|
| 663 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 664 |
+
|
| 665 |
+
if attn.group_norm is not None:
|
| 666 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 667 |
+
|
| 668 |
+
query = attn.to_q(hidden_states)
|
| 669 |
+
|
| 670 |
+
if encoder_hidden_states is None:
|
| 671 |
+
encoder_hidden_states = hidden_states
|
| 672 |
+
else:
|
| 673 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 674 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 675 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 676 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 677 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 678 |
+
)
|
| 679 |
+
if attn.norm_cross:
|
| 680 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 681 |
+
|
| 682 |
+
key = attn.to_k(encoder_hidden_states)
|
| 683 |
+
value = attn.to_v(encoder_hidden_states)
|
| 684 |
+
|
| 685 |
+
inner_dim = key.shape[-1]
|
| 686 |
+
head_dim = inner_dim // attn.heads
|
| 687 |
+
|
| 688 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 689 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 690 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 691 |
+
|
| 692 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
| 693 |
+
# hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
|
| 694 |
+
|
| 695 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 696 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 697 |
+
|
| 698 |
+
# hidden_states = memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0)
|
| 699 |
+
|
| 700 |
+
# for ip-adapter
|
| 701 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 702 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 703 |
+
|
| 704 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 705 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 706 |
+
|
| 707 |
+
# ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
| 708 |
+
# ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, None)
|
| 709 |
+
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
| 710 |
+
|
| 711 |
+
with torch.no_grad():
|
| 712 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
| 713 |
+
#print(self.attn_map.shape)
|
| 714 |
+
|
| 715 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 716 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 717 |
+
|
| 718 |
+
# region control
|
| 719 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
| 720 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 721 |
+
if region_mask is not None:
|
| 722 |
+
query = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
| 723 |
+
h, w = region_mask.shape[:2]
|
| 724 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
| 725 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
| 726 |
+
else:
|
| 727 |
+
mask = torch.ones_like(ip_hidden_states)
|
| 728 |
+
ip_hidden_states = ip_hidden_states * mask
|
| 729 |
+
# ip_hidden_states = memory_efficient_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0)
|
| 730 |
+
|
| 731 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * (ip_key.shape[-1] // attn.heads))
|
| 732 |
+
|
| 733 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 734 |
+
|
| 735 |
+
# linear proj
|
| 736 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 737 |
+
# dropout
|
| 738 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 739 |
+
|
| 740 |
+
if input_ndim == 4:
|
| 741 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 742 |
+
|
| 743 |
+
if attn.residual_connection:
|
| 744 |
+
hidden_states = hidden_states + residual
|
| 745 |
+
|
| 746 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 747 |
+
|
| 748 |
+
return hidden_states
|
| 749 |
+
|
| 750 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
| 751 |
+
# TODO attention_mask
|
| 752 |
+
query = query.contiguous()
|
| 753 |
+
key = key.contiguous()
|
| 754 |
+
value = value.contiguous()
|
| 755 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 756 |
+
# hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 757 |
+
return hidden_states
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
class IPAttnProcessor2_00(torch.nn.Module):
|
| 761 |
+
r"""
|
| 762 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
| 763 |
+
Args:
|
| 764 |
+
hidden_size (`int`):
|
| 765 |
+
The hidden size of the attention layer.
|
| 766 |
+
cross_attention_dim (`int`):
|
| 767 |
+
The number of channels in the `encoder_hidden_states`.
|
| 768 |
+
scale (`float`, defaults to 1.0):
|
| 769 |
+
the weight scale of image prompt.
|
| 770 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 771 |
+
The context length of the image features.
|
| 772 |
+
"""
|
| 773 |
+
|
| 774 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 775 |
+
super().__init__()
|
| 776 |
+
|
| 777 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 778 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 779 |
+
|
| 780 |
+
self.hidden_size = hidden_size
|
| 781 |
+
self.cross_attention_dim = cross_attention_dim
|
| 782 |
+
self.scale = scale
|
| 783 |
+
self.num_tokens = num_tokens
|
| 784 |
+
|
| 785 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 786 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 787 |
+
|
| 788 |
+
def __call__(
|
| 789 |
+
self,
|
| 790 |
+
attn,
|
| 791 |
+
hidden_states,
|
| 792 |
+
encoder_hidden_states=None,
|
| 793 |
+
attention_mask=None,
|
| 794 |
+
temb=None,
|
| 795 |
+
):
|
| 796 |
+
residual = hidden_states
|
| 797 |
+
|
| 798 |
+
if attn.spatial_norm is not None:
|
| 799 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 800 |
+
|
| 801 |
+
input_ndim = hidden_states.ndim
|
| 802 |
+
|
| 803 |
+
if input_ndim == 4:
|
| 804 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 805 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 806 |
+
|
| 807 |
+
batch_size, sequence_length, _ = (
|
| 808 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
if attention_mask is not None:
|
| 812 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 813 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 814 |
+
# (batch, heads, source_length, target_length)
|
| 815 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 816 |
+
|
| 817 |
+
if attn.group_norm is not None:
|
| 818 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 819 |
+
|
| 820 |
+
query = attn.to_q(hidden_states)
|
| 821 |
+
|
| 822 |
+
if encoder_hidden_states is None:
|
| 823 |
+
encoder_hidden_states = hidden_states
|
| 824 |
+
else:
|
| 825 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 826 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 827 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 828 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 829 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 830 |
+
)
|
| 831 |
+
if attn.norm_cross:
|
| 832 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 833 |
+
|
| 834 |
+
key = attn.to_k(encoder_hidden_states)
|
| 835 |
+
value = attn.to_v(encoder_hidden_states)
|
| 836 |
+
|
| 837 |
+
inner_dim = key.shape[-1]
|
| 838 |
+
head_dim = inner_dim // attn.heads
|
| 839 |
+
|
| 840 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 841 |
+
|
| 842 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 843 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 844 |
+
|
| 845 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 846 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 847 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 848 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 852 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 853 |
+
|
| 854 |
+
# for ip-adapter
|
| 855 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 856 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 857 |
+
|
| 858 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 859 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 860 |
+
|
| 861 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 862 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 863 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
| 864 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 868 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 869 |
+
|
| 870 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 871 |
+
|
| 872 |
+
# linear proj
|
| 873 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 874 |
+
# dropout
|
| 875 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 876 |
+
|
| 877 |
+
if input_ndim == 4:
|
| 878 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 879 |
+
|
| 880 |
+
if attn.residual_connection:
|
| 881 |
+
hidden_states = hidden_states + residual
|
| 882 |
+
|
| 883 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 884 |
+
|
| 885 |
+
return hidden_states
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
## for controlnet
|
utils/callbacks.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
|
| 3 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 4 |
+
from diffusers.utils import CONFIG_NAME
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class PipelineCallback(ConfigMixin):
|
| 8 |
+
"""
|
| 9 |
+
Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing
|
| 10 |
+
custom callbacks and ensures that all callbacks have a consistent interface.
|
| 11 |
+
|
| 12 |
+
Please implement the following:
|
| 13 |
+
`tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to
|
| 14 |
+
include
|
| 15 |
+
variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
|
| 16 |
+
`callback_fn`: This method defines the core functionality of your callback.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
config_name = CONFIG_NAME
|
| 20 |
+
|
| 21 |
+
@register_to_config
|
| 22 |
+
def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None):
|
| 23 |
+
super().__init__()
|
| 24 |
+
|
| 25 |
+
if (cutoff_step_ratio is None and cutoff_step_index is None) or (
|
| 26 |
+
cutoff_step_ratio is not None and cutoff_step_index is not None
|
| 27 |
+
):
|
| 28 |
+
raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.")
|
| 29 |
+
|
| 30 |
+
if cutoff_step_ratio is not None and (
|
| 31 |
+
not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0)
|
| 32 |
+
):
|
| 33 |
+
raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.")
|
| 34 |
+
|
| 35 |
+
@property
|
| 36 |
+
def tensor_inputs(self) -> List[str]:
|
| 37 |
+
raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}")
|
| 38 |
+
|
| 39 |
+
def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]:
|
| 40 |
+
raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}")
|
| 41 |
+
|
| 42 |
+
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
| 43 |
+
return self.callback_fn(pipeline, step_index, timestep, callback_kwargs)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class MultiPipelineCallbacks:
|
| 47 |
+
"""
|
| 48 |
+
This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and
|
| 49 |
+
provides a unified interface for calling all of them.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(self, callbacks: List[PipelineCallback]):
|
| 53 |
+
self.callbacks = callbacks
|
| 54 |
+
|
| 55 |
+
@property
|
| 56 |
+
def tensor_inputs(self) -> List[str]:
|
| 57 |
+
return [input for callback in self.callbacks for input in callback.tensor_inputs]
|
| 58 |
+
|
| 59 |
+
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
| 60 |
+
"""
|
| 61 |
+
Calls all the callbacks in order with the given arguments and returns the final callback_kwargs.
|
| 62 |
+
"""
|
| 63 |
+
for callback in self.callbacks:
|
| 64 |
+
callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs)
|
| 65 |
+
|
| 66 |
+
return callback_kwargs
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class SDCFGCutoffCallback(PipelineCallback):
|
| 70 |
+
"""
|
| 71 |
+
Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
|
| 72 |
+
`cutoff_step_index`), this callback will disable the CFG.
|
| 73 |
+
|
| 74 |
+
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
tensor_inputs = ["prompt_embeds"]
|
| 78 |
+
|
| 79 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
| 80 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
| 81 |
+
cutoff_step_index = self.config.cutoff_step_index
|
| 82 |
+
|
| 83 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
| 84 |
+
cutoff_step = (
|
| 85 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
if step_index == cutoff_step:
|
| 89 |
+
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
|
| 90 |
+
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
|
| 91 |
+
|
| 92 |
+
pipeline._guidance_scale = 0.0
|
| 93 |
+
|
| 94 |
+
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
|
| 95 |
+
return callback_kwargs
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class SDXLCFGCutoffCallback(PipelineCallback):
|
| 99 |
+
"""
|
| 100 |
+
Callback function for Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
|
| 101 |
+
`cutoff_step_index`), this callback will disable the CFG.
|
| 102 |
+
|
| 103 |
+
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
|
| 107 |
+
|
| 108 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
| 109 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
| 110 |
+
cutoff_step_index = self.config.cutoff_step_index
|
| 111 |
+
|
| 112 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
| 113 |
+
cutoff_step = (
|
| 114 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if step_index == cutoff_step:
|
| 118 |
+
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
|
| 119 |
+
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
|
| 120 |
+
|
| 121 |
+
add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
|
| 122 |
+
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens
|
| 123 |
+
|
| 124 |
+
add_time_ids = callback_kwargs[self.tensor_inputs[2]]
|
| 125 |
+
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector
|
| 126 |
+
|
| 127 |
+
pipeline._guidance_scale = 0.0
|
| 128 |
+
|
| 129 |
+
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
|
| 130 |
+
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
|
| 131 |
+
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
|
| 132 |
+
return callback_kwargs
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class IPAdapterScaleCutoffCallback(PipelineCallback):
|
| 136 |
+
"""
|
| 137 |
+
Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by
|
| 138 |
+
`cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`.
|
| 139 |
+
|
| 140 |
+
Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
tensor_inputs = []
|
| 144 |
+
|
| 145 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
| 146 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
| 147 |
+
cutoff_step_index = self.config.cutoff_step_index
|
| 148 |
+
|
| 149 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
| 150 |
+
cutoff_step = (
|
| 151 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
if step_index == cutoff_step:
|
| 155 |
+
pipeline.set_ip_adapter_scale(0.0)
|
| 156 |
+
return callback_kwargs
|
utils/controlnet_xs.py
ADDED
|
@@ -0,0 +1,2066 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from math import gcd
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.utils.checkpoint
|
| 20 |
+
from torch import Tensor, nn
|
| 21 |
+
from torch.nn import functional as F
|
| 22 |
+
|
| 23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from diffusers.utils import BaseOutput, is_torch_version, logging
|
| 25 |
+
from diffusers.utils.torch_utils import apply_freeu
|
| 26 |
+
from diffusers.models.attention_processor import (
|
| 27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 28 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 29 |
+
Attention,
|
| 30 |
+
AttentionProcessor,
|
| 31 |
+
AttnAddedKVProcessor,
|
| 32 |
+
AttnProcessor,
|
| 33 |
+
)
|
| 34 |
+
#from diffusers.models.controlnet import ControlNetConditioningEmbedding
|
| 35 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 36 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 37 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
| 38 |
+
CrossAttnDownBlock2D,
|
| 39 |
+
CrossAttnUpBlock2D,
|
| 40 |
+
Downsample2D,
|
| 41 |
+
ResnetBlock2D,
|
| 42 |
+
Transformer2DModel,
|
| 43 |
+
Upsample2D,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
from utils.modules import UNetMidBlock2DCrossAttn
|
| 47 |
+
|
| 48 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
| 49 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 50 |
+
|
| 51 |
+
# from modules.unet_2d_condition import UNet2DConditionModel
|
| 52 |
+
# from modules.unet import UNet2DConditionLoadersMixin
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 55 |
+
|
| 56 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
| 57 |
+
"""
|
| 58 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
| 59 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
| 60 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
| 61 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
| 62 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
| 63 |
+
model) to encode image-space conditions ... into feature maps ..."
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
conditioning_embedding_channels: int,
|
| 69 |
+
conditioning_channels: int = 3,
|
| 70 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 71 |
+
):
|
| 72 |
+
super().__init__()
|
| 73 |
+
|
| 74 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 75 |
+
|
| 76 |
+
self.blocks = nn.ModuleList([])
|
| 77 |
+
|
| 78 |
+
for i in range(len(block_out_channels) - 1):
|
| 79 |
+
channel_in = block_out_channels[i]
|
| 80 |
+
channel_out = block_out_channels[i + 1]
|
| 81 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 82 |
+
|
| 83 |
+
stride = 1 if conditioning_channels == 4 else 2
|
| 84 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=stride))
|
| 85 |
+
|
| 86 |
+
self.conv_out = zero_module(
|
| 87 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def forward(self, conditioning):
|
| 91 |
+
embedding = self.conv_in(conditioning)
|
| 92 |
+
embedding = F.silu(embedding)
|
| 93 |
+
|
| 94 |
+
for block in self.blocks:
|
| 95 |
+
embedding = block(embedding)
|
| 96 |
+
embedding = F.silu(embedding)
|
| 97 |
+
|
| 98 |
+
embedding = self.conv_out(embedding)
|
| 99 |
+
|
| 100 |
+
return embedding
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
@dataclass
|
| 104 |
+
class ControlNetXSOutput(BaseOutput):
|
| 105 |
+
"""
|
| 106 |
+
The output of [`UNetControlNetXSModel`].
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
sample (`Tensor` of shape `(batch_size, num_channels, height, width)`):
|
| 110 |
+
The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base
|
| 111 |
+
model output, but is already the final output.
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
sample: Tensor = None
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class DownBlockControlNetXSAdapter(nn.Module):
|
| 118 |
+
"""Components that together with corresponding components from the base model will form a
|
| 119 |
+
`ControlNetXSCrossAttnDownBlock2D`"""
|
| 120 |
+
|
| 121 |
+
def __init__(
|
| 122 |
+
self,
|
| 123 |
+
resnets: nn.ModuleList,
|
| 124 |
+
base_to_ctrl: nn.ModuleList,
|
| 125 |
+
ctrl_to_base: nn.ModuleList,
|
| 126 |
+
attentions: Optional[nn.ModuleList] = None,
|
| 127 |
+
downsampler: Optional[nn.Conv2d] = None,
|
| 128 |
+
):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.resnets = resnets
|
| 131 |
+
self.base_to_ctrl = base_to_ctrl
|
| 132 |
+
self.ctrl_to_base = ctrl_to_base
|
| 133 |
+
self.attentions = attentions
|
| 134 |
+
self.downsamplers = downsampler
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class MidBlockControlNetXSAdapter(nn.Module):
|
| 138 |
+
"""Components that together with corresponding components from the base model will form a
|
| 139 |
+
`ControlNetXSCrossAttnMidBlock2D`"""
|
| 140 |
+
|
| 141 |
+
def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.midblock = midblock
|
| 144 |
+
self.base_to_ctrl = base_to_ctrl
|
| 145 |
+
self.ctrl_to_base = ctrl_to_base
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class UpBlockControlNetXSAdapter(nn.Module):
|
| 149 |
+
"""Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`"""
|
| 150 |
+
|
| 151 |
+
def __init__(self, ctrl_to_base: nn.ModuleList):
|
| 152 |
+
super().__init__()
|
| 153 |
+
self.ctrl_to_base = ctrl_to_base
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_down_block_adapter(
|
| 157 |
+
base_in_channels: int,
|
| 158 |
+
base_out_channels: int,
|
| 159 |
+
ctrl_in_channels: int,
|
| 160 |
+
ctrl_out_channels: int,
|
| 161 |
+
temb_channels: int,
|
| 162 |
+
max_norm_num_groups: Optional[int] = 32,
|
| 163 |
+
has_crossattn=True,
|
| 164 |
+
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
|
| 165 |
+
num_attention_heads: Optional[int] = 1,
|
| 166 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 167 |
+
add_downsample: bool = True,
|
| 168 |
+
upcast_attention: Optional[bool] = False,
|
| 169 |
+
):
|
| 170 |
+
num_layers = 2 # only support sd + sdxl
|
| 171 |
+
|
| 172 |
+
resnets = []
|
| 173 |
+
attentions = []
|
| 174 |
+
ctrl_to_base = []
|
| 175 |
+
base_to_ctrl = []
|
| 176 |
+
|
| 177 |
+
if isinstance(transformer_layers_per_block, int):
|
| 178 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 179 |
+
|
| 180 |
+
for i in range(num_layers):
|
| 181 |
+
base_in_channels = base_in_channels if i == 0 else base_out_channels
|
| 182 |
+
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
|
| 183 |
+
|
| 184 |
+
# Before the resnet/attention application, information is concatted from base to control.
|
| 185 |
+
# Concat doesn't require change in number of channels
|
| 186 |
+
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
|
| 187 |
+
|
| 188 |
+
resnets.append(
|
| 189 |
+
ResnetBlock2D(
|
| 190 |
+
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
|
| 191 |
+
out_channels=ctrl_out_channels,
|
| 192 |
+
temb_channels=temb_channels,
|
| 193 |
+
groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups),
|
| 194 |
+
groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
|
| 195 |
+
eps=1e-5,
|
| 196 |
+
)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
if has_crossattn:
|
| 200 |
+
attentions.append(
|
| 201 |
+
Transformer2DModel(
|
| 202 |
+
num_attention_heads,
|
| 203 |
+
ctrl_out_channels // num_attention_heads,
|
| 204 |
+
in_channels=ctrl_out_channels,
|
| 205 |
+
num_layers=transformer_layers_per_block[i],
|
| 206 |
+
cross_attention_dim=cross_attention_dim,
|
| 207 |
+
use_linear_projection=True,
|
| 208 |
+
upcast_attention=upcast_attention,
|
| 209 |
+
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
|
| 210 |
+
)
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# After the resnet/attention application, information is added from control to base
|
| 214 |
+
# Addition requires change in number of channels
|
| 215 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 216 |
+
|
| 217 |
+
if add_downsample:
|
| 218 |
+
# Before the downsampler application, information is concatted from base to control
|
| 219 |
+
# Concat doesn't require change in number of channels
|
| 220 |
+
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
|
| 221 |
+
|
| 222 |
+
downsamplers = Downsample2D(
|
| 223 |
+
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# After the downsampler application, information is added from control to base
|
| 227 |
+
# Addition requires change in number of channels
|
| 228 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 229 |
+
else:
|
| 230 |
+
downsamplers = None
|
| 231 |
+
|
| 232 |
+
down_block_components = DownBlockControlNetXSAdapter(
|
| 233 |
+
resnets=nn.ModuleList(resnets),
|
| 234 |
+
base_to_ctrl=nn.ModuleList(base_to_ctrl),
|
| 235 |
+
ctrl_to_base=nn.ModuleList(ctrl_to_base),
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
if has_crossattn:
|
| 239 |
+
down_block_components.attentions = nn.ModuleList(attentions)
|
| 240 |
+
if downsamplers is not None:
|
| 241 |
+
down_block_components.downsamplers = downsamplers
|
| 242 |
+
|
| 243 |
+
return down_block_components
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def get_mid_block_adapter(
|
| 247 |
+
base_channels: int,
|
| 248 |
+
ctrl_channels: int,
|
| 249 |
+
temb_channels: Optional[int] = None,
|
| 250 |
+
max_norm_num_groups: Optional[int] = 32,
|
| 251 |
+
transformer_layers_per_block: int = 1,
|
| 252 |
+
num_attention_heads: Optional[int] = 1,
|
| 253 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 254 |
+
upcast_attention: bool = False,
|
| 255 |
+
):
|
| 256 |
+
# Before the midblock application, information is concatted from base to control.
|
| 257 |
+
# Concat doesn't require change in number of channels
|
| 258 |
+
base_to_ctrl = make_zero_conv(base_channels, base_channels)
|
| 259 |
+
|
| 260 |
+
midblock = UNetMidBlock2DCrossAttn(
|
| 261 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 262 |
+
in_channels=ctrl_channels + base_channels,
|
| 263 |
+
out_channels=ctrl_channels,
|
| 264 |
+
temb_channels=temb_channels,
|
| 265 |
+
# number or norm groups must divide both in_channels and out_channels
|
| 266 |
+
resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups),
|
| 267 |
+
cross_attention_dim=cross_attention_dim,
|
| 268 |
+
num_attention_heads=num_attention_heads,
|
| 269 |
+
use_linear_projection=True,
|
| 270 |
+
upcast_attention=upcast_attention,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# After the midblock application, information is added from control to base
|
| 274 |
+
# Addition requires change in number of channels
|
| 275 |
+
ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
|
| 276 |
+
|
| 277 |
+
return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def get_up_block_adapter(
|
| 281 |
+
out_channels: int,
|
| 282 |
+
prev_output_channel: int,
|
| 283 |
+
ctrl_skip_channels: List[int],
|
| 284 |
+
):
|
| 285 |
+
ctrl_to_base = []
|
| 286 |
+
num_layers = 3 # only support sd + sdxl
|
| 287 |
+
for i in range(num_layers):
|
| 288 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 289 |
+
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
|
| 290 |
+
|
| 291 |
+
return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base))
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class ControlNetXSAdapter(ModelMixin, ConfigMixin):
|
| 295 |
+
r"""
|
| 296 |
+
A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a
|
| 297 |
+
`UNet2DConditionModel` base model).
|
| 298 |
+
|
| 299 |
+
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
|
| 300 |
+
methods implemented for all models (such as downloading or saving).
|
| 301 |
+
|
| 302 |
+
Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's
|
| 303 |
+
default parameters are compatible with StableDiffusion.
|
| 304 |
+
|
| 305 |
+
Parameters:
|
| 306 |
+
conditioning_channels (`int`, defaults to 3):
|
| 307 |
+
Number of channels of conditioning input (e.g. an image)
|
| 308 |
+
conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 309 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 310 |
+
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
| 311 |
+
The tuple of output channels for each block in the `controlnet_cond_embedding` layer.
|
| 312 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
| 313 |
+
If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time
|
| 314 |
+
embedding is used. Otherwise, both are combined.
|
| 315 |
+
learn_time_embedding (`bool`, defaults to `False`):
|
| 316 |
+
Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time
|
| 317 |
+
embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base
|
| 318 |
+
model's time embedding.
|
| 319 |
+
num_attention_heads (`list[int]`, defaults to `[4]`):
|
| 320 |
+
The number of attention heads.
|
| 321 |
+
block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`):
|
| 322 |
+
The tuple of output channels for each block.
|
| 323 |
+
base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`):
|
| 324 |
+
The tuple of output channels for each block in the base unet.
|
| 325 |
+
cross_attention_dim (`int`, defaults to 1024):
|
| 326 |
+
The dimension of the cross attention features.
|
| 327 |
+
down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`):
|
| 328 |
+
The tuple of downsample blocks to use.
|
| 329 |
+
sample_size (`int`, defaults to 96):
|
| 330 |
+
Height and width of input/output sample.
|
| 331 |
+
transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1):
|
| 332 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 333 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 334 |
+
upcast_attention (`bool`, defaults to `True`):
|
| 335 |
+
Whether the attention computation should always be upcasted.
|
| 336 |
+
max_norm_num_groups (`int`, defaults to 32):
|
| 337 |
+
Maximum number of groups in group normal. The actual number will the the largest divisor of the respective
|
| 338 |
+
channels, that is <= max_norm_num_groups.
|
| 339 |
+
"""
|
| 340 |
+
|
| 341 |
+
@register_to_config
|
| 342 |
+
def __init__(
|
| 343 |
+
self,
|
| 344 |
+
conditioning_channels: int = 3,
|
| 345 |
+
conditioning_channel_order: str = "rgb",
|
| 346 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 347 |
+
time_embedding_mix: float = 1.0,
|
| 348 |
+
learn_time_embedding: bool = False,
|
| 349 |
+
num_attention_heads: Union[int, Tuple[int]] = 4,
|
| 350 |
+
block_out_channels: Tuple[int] = (4, 8, 16, 16),
|
| 351 |
+
base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 352 |
+
cross_attention_dim: int = 1024,
|
| 353 |
+
down_block_types: Tuple[str] = (
|
| 354 |
+
"CrossAttnDownBlock2D",
|
| 355 |
+
"CrossAttnDownBlock2D",
|
| 356 |
+
"CrossAttnDownBlock2D",
|
| 357 |
+
"DownBlock2D",
|
| 358 |
+
),
|
| 359 |
+
sample_size: Optional[int] = 96,
|
| 360 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 361 |
+
upcast_attention: bool = True,
|
| 362 |
+
max_norm_num_groups: int = 32,
|
| 363 |
+
):
|
| 364 |
+
super().__init__()
|
| 365 |
+
|
| 366 |
+
time_embedding_input_dim = base_block_out_channels[0]
|
| 367 |
+
time_embedding_dim = base_block_out_channels[0] * 4
|
| 368 |
+
|
| 369 |
+
# Check inputs
|
| 370 |
+
if conditioning_channel_order not in ["rgb", "bgr"]:
|
| 371 |
+
raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}")
|
| 372 |
+
|
| 373 |
+
if len(block_out_channels) != len(down_block_types):
|
| 374 |
+
raise ValueError(
|
| 375 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
if not isinstance(transformer_layers_per_block, (list, tuple)):
|
| 379 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 380 |
+
if not isinstance(cross_attention_dim, (list, tuple)):
|
| 381 |
+
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
|
| 382 |
+
# see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim`
|
| 383 |
+
if not isinstance(num_attention_heads, (list, tuple)):
|
| 384 |
+
num_attention_heads = [num_attention_heads] * len(down_block_types)
|
| 385 |
+
|
| 386 |
+
if len(num_attention_heads) != len(down_block_types):
|
| 387 |
+
raise ValueError(
|
| 388 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# 5 - Create conditioning hint embedding
|
| 392 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 393 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 394 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 395 |
+
conditioning_channels=conditioning_channels,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# time
|
| 399 |
+
if learn_time_embedding:
|
| 400 |
+
self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim)
|
| 401 |
+
else:
|
| 402 |
+
self.time_embedding = None
|
| 403 |
+
|
| 404 |
+
self.down_blocks = nn.ModuleList([])
|
| 405 |
+
self.up_connections = nn.ModuleList([])
|
| 406 |
+
|
| 407 |
+
# input
|
| 408 |
+
self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
|
| 409 |
+
self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
|
| 410 |
+
|
| 411 |
+
# down
|
| 412 |
+
base_out_channels = base_block_out_channels[0]
|
| 413 |
+
ctrl_out_channels = block_out_channels[0]
|
| 414 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 415 |
+
base_in_channels = base_out_channels
|
| 416 |
+
base_out_channels = base_block_out_channels[i]
|
| 417 |
+
ctrl_in_channels = ctrl_out_channels
|
| 418 |
+
ctrl_out_channels = block_out_channels[i]
|
| 419 |
+
has_crossattn = "CrossAttn" in down_block_type
|
| 420 |
+
is_final_block = i == len(down_block_types) - 1
|
| 421 |
+
|
| 422 |
+
self.down_blocks.append(
|
| 423 |
+
get_down_block_adapter(
|
| 424 |
+
base_in_channels=base_in_channels,
|
| 425 |
+
base_out_channels=base_out_channels,
|
| 426 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 427 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 428 |
+
temb_channels=time_embedding_dim,
|
| 429 |
+
max_norm_num_groups=max_norm_num_groups,
|
| 430 |
+
has_crossattn=has_crossattn,
|
| 431 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 432 |
+
num_attention_heads=num_attention_heads[i],
|
| 433 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 434 |
+
add_downsample=not is_final_block,
|
| 435 |
+
upcast_attention=upcast_attention,
|
| 436 |
+
)
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
# mid
|
| 440 |
+
self.mid_block = get_mid_block_adapter(
|
| 441 |
+
base_channels=base_block_out_channels[-1],
|
| 442 |
+
ctrl_channels=block_out_channels[-1],
|
| 443 |
+
temb_channels=time_embedding_dim,
|
| 444 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 445 |
+
num_attention_heads=num_attention_heads[-1],
|
| 446 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 447 |
+
upcast_attention=upcast_attention,
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# up
|
| 451 |
+
# The skip connection channels are the output of the conv_in and of all the down subblocks
|
| 452 |
+
ctrl_skip_channels = [block_out_channels[0]]
|
| 453 |
+
for i, out_channels in enumerate(block_out_channels):
|
| 454 |
+
number_of_subblocks = (
|
| 455 |
+
3 if i < len(block_out_channels) - 1 else 2
|
| 456 |
+
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
|
| 457 |
+
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
|
| 458 |
+
|
| 459 |
+
reversed_base_block_out_channels = list(reversed(base_block_out_channels))
|
| 460 |
+
|
| 461 |
+
base_out_channels = reversed_base_block_out_channels[0]
|
| 462 |
+
for i in range(len(down_block_types)):
|
| 463 |
+
prev_base_output_channel = base_out_channels
|
| 464 |
+
base_out_channels = reversed_base_block_out_channels[i]
|
| 465 |
+
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
|
| 466 |
+
|
| 467 |
+
self.up_connections.append(
|
| 468 |
+
get_up_block_adapter(
|
| 469 |
+
out_channels=base_out_channels,
|
| 470 |
+
prev_output_channel=prev_base_output_channel,
|
| 471 |
+
ctrl_skip_channels=ctrl_skip_channels_,
|
| 472 |
+
)
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
@classmethod
|
| 476 |
+
def from_unet(
|
| 477 |
+
cls,
|
| 478 |
+
unet: UNet2DConditionModel,
|
| 479 |
+
size_ratio: Optional[float] = None,
|
| 480 |
+
block_out_channels: Optional[List[int]] = None,
|
| 481 |
+
num_attention_heads: Optional[List[int]] = None,
|
| 482 |
+
learn_time_embedding: bool = False,
|
| 483 |
+
time_embedding_mix: int = 1.0,
|
| 484 |
+
conditioning_channels: int = 3,
|
| 485 |
+
conditioning_channel_order: str = "rgb",
|
| 486 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 487 |
+
):
|
| 488 |
+
r"""
|
| 489 |
+
Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
|
| 490 |
+
|
| 491 |
+
Parameters:
|
| 492 |
+
unet (`UNet2DConditionModel`):
|
| 493 |
+
The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it.
|
| 494 |
+
size_ratio (float, *optional*, defaults to `None`):
|
| 495 |
+
When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this
|
| 496 |
+
or `block_out_channels` must be given.
|
| 497 |
+
block_out_channels (`List[int]`, *optional*, defaults to `None`):
|
| 498 |
+
Down blocks output channels in control model. Either this or `size_ratio` must be given.
|
| 499 |
+
num_attention_heads (`List[int]`, *optional*, defaults to `None`):
|
| 500 |
+
The dimension of the attention heads. The naming seems a bit confusing and it is, see
|
| 501 |
+
https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 502 |
+
learn_time_embedding (`bool`, defaults to `False`):
|
| 503 |
+
Whether the `ControlNetXSAdapter` should learn a time embedding.
|
| 504 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
| 505 |
+
If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time
|
| 506 |
+
embedding is used. Otherwise, both are combined.
|
| 507 |
+
conditioning_channels (`int`, defaults to 3):
|
| 508 |
+
Number of channels of conditioning input (e.g. an image)
|
| 509 |
+
conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 510 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 511 |
+
conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
| 512 |
+
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
|
| 513 |
+
"""
|
| 514 |
+
|
| 515 |
+
# Check input
|
| 516 |
+
fixed_size = block_out_channels is not None
|
| 517 |
+
relative_size = size_ratio is not None
|
| 518 |
+
if not (fixed_size ^ relative_size):
|
| 519 |
+
raise ValueError(
|
| 520 |
+
"Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)."
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
# Create model
|
| 524 |
+
block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels]
|
| 525 |
+
if num_attention_heads is None:
|
| 526 |
+
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 527 |
+
num_attention_heads = unet.config.attention_head_dim
|
| 528 |
+
|
| 529 |
+
model = cls(
|
| 530 |
+
conditioning_channels=conditioning_channels,
|
| 531 |
+
conditioning_channel_order=conditioning_channel_order,
|
| 532 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 533 |
+
time_embedding_mix=time_embedding_mix,
|
| 534 |
+
learn_time_embedding=learn_time_embedding,
|
| 535 |
+
num_attention_heads=num_attention_heads,
|
| 536 |
+
block_out_channels=block_out_channels,
|
| 537 |
+
base_block_out_channels=unet.config.block_out_channels,
|
| 538 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 539 |
+
down_block_types=unet.config.down_block_types,
|
| 540 |
+
sample_size=unet.config.sample_size,
|
| 541 |
+
transformer_layers_per_block=unet.config.transformer_layers_per_block,
|
| 542 |
+
upcast_attention=unet.config.upcast_attention,
|
| 543 |
+
max_norm_num_groups=unet.config.norm_num_groups,
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
# ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel
|
| 547 |
+
model.to(unet.dtype)
|
| 548 |
+
|
| 549 |
+
return model
|
| 550 |
+
|
| 551 |
+
def forward(self, *args, **kwargs):
|
| 552 |
+
raise ValueError(
|
| 553 |
+
"A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel."
|
| 554 |
+
)
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
class UNetControlNetXSModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 558 |
+
r"""
|
| 559 |
+
A UNet fused with a ControlNet-XS adapter model
|
| 560 |
+
|
| 561 |
+
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
|
| 562 |
+
methods implemented for all models (such as downloading or saving).
|
| 563 |
+
|
| 564 |
+
`UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are
|
| 565 |
+
compatible with StableDiffusion.
|
| 566 |
+
|
| 567 |
+
It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in
|
| 568 |
+
`ControlNetXSAdapter` . See their documentation for details.
|
| 569 |
+
"""
|
| 570 |
+
|
| 571 |
+
_supports_gradient_checkpointing = True
|
| 572 |
+
|
| 573 |
+
@register_to_config
|
| 574 |
+
def __init__(
|
| 575 |
+
self,
|
| 576 |
+
# unet configs
|
| 577 |
+
sample_size: Optional[int] = 96,
|
| 578 |
+
down_block_types: Tuple[str] = (
|
| 579 |
+
"CrossAttnDownBlock2D",
|
| 580 |
+
"CrossAttnDownBlock2D",
|
| 581 |
+
"CrossAttnDownBlock2D",
|
| 582 |
+
"DownBlock2D",
|
| 583 |
+
),
|
| 584 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
| 585 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 586 |
+
norm_num_groups: Optional[int] = 32,
|
| 587 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1024,
|
| 588 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 589 |
+
num_attention_heads: Union[int, Tuple[int]] = 8,
|
| 590 |
+
addition_embed_type: Optional[str] = None,
|
| 591 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 592 |
+
upcast_attention: bool = True,
|
| 593 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 594 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 595 |
+
# additional controlnet configs
|
| 596 |
+
time_embedding_mix: float = 1.0,
|
| 597 |
+
ctrl_conditioning_channels: int = 3,
|
| 598 |
+
ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 599 |
+
ctrl_conditioning_channel_order: str = "rgb",
|
| 600 |
+
ctrl_learn_time_embedding: bool = False,
|
| 601 |
+
ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16),
|
| 602 |
+
ctrl_num_attention_heads: Union[int, Tuple[int]] = 4,
|
| 603 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 604 |
+
):
|
| 605 |
+
super().__init__()
|
| 606 |
+
|
| 607 |
+
if time_embedding_mix < 0 or time_embedding_mix > 1:
|
| 608 |
+
raise ValueError("`time_embedding_mix` needs to be between 0 and 1.")
|
| 609 |
+
if time_embedding_mix < 1 and not ctrl_learn_time_embedding:
|
| 610 |
+
raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`")
|
| 611 |
+
|
| 612 |
+
if addition_embed_type is not None and addition_embed_type != "text_time":
|
| 613 |
+
raise ValueError(
|
| 614 |
+
"As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`."
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
if not isinstance(transformer_layers_per_block, (list, tuple)):
|
| 618 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 619 |
+
if not isinstance(cross_attention_dim, (list, tuple)):
|
| 620 |
+
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
|
| 621 |
+
if not isinstance(num_attention_heads, (list, tuple)):
|
| 622 |
+
num_attention_heads = [num_attention_heads] * len(down_block_types)
|
| 623 |
+
if not isinstance(ctrl_num_attention_heads, (list, tuple)):
|
| 624 |
+
ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types)
|
| 625 |
+
|
| 626 |
+
base_num_attention_heads = num_attention_heads
|
| 627 |
+
|
| 628 |
+
self.in_channels = 4
|
| 629 |
+
|
| 630 |
+
# # Input
|
| 631 |
+
self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
|
| 632 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 633 |
+
conditioning_embedding_channels=ctrl_block_out_channels[0],
|
| 634 |
+
block_out_channels=ctrl_conditioning_embedding_out_channels,
|
| 635 |
+
conditioning_channels=ctrl_conditioning_channels,
|
| 636 |
+
)
|
| 637 |
+
self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1)
|
| 638 |
+
self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0])
|
| 639 |
+
|
| 640 |
+
# # Time
|
| 641 |
+
time_embed_input_dim = block_out_channels[0]
|
| 642 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 643 |
+
|
| 644 |
+
self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 645 |
+
self.base_time_embedding = TimestepEmbedding(
|
| 646 |
+
time_embed_input_dim,
|
| 647 |
+
time_embed_dim,
|
| 648 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 649 |
+
)
|
| 650 |
+
self.ctrl_time_embedding = TimestepEmbedding(in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim)
|
| 651 |
+
|
| 652 |
+
if addition_embed_type is None:
|
| 653 |
+
self.base_add_time_proj = None
|
| 654 |
+
self.base_add_embedding = None
|
| 655 |
+
else:
|
| 656 |
+
self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 657 |
+
self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 658 |
+
|
| 659 |
+
# # Create down blocks
|
| 660 |
+
down_blocks = []
|
| 661 |
+
base_out_channels = block_out_channels[0]
|
| 662 |
+
ctrl_out_channels = ctrl_block_out_channels[0]
|
| 663 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 664 |
+
base_in_channels = base_out_channels
|
| 665 |
+
base_out_channels = block_out_channels[i]
|
| 666 |
+
ctrl_in_channels = ctrl_out_channels
|
| 667 |
+
ctrl_out_channels = ctrl_block_out_channels[i]
|
| 668 |
+
has_crossattn = "CrossAttn" in down_block_type
|
| 669 |
+
is_final_block = i == len(down_block_types) - 1
|
| 670 |
+
|
| 671 |
+
down_blocks.append(
|
| 672 |
+
ControlNetXSCrossAttnDownBlock2D(
|
| 673 |
+
base_in_channels=base_in_channels,
|
| 674 |
+
base_out_channels=base_out_channels,
|
| 675 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 676 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 677 |
+
temb_channels=time_embed_dim,
|
| 678 |
+
norm_num_groups=norm_num_groups,
|
| 679 |
+
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
|
| 680 |
+
has_crossattn=has_crossattn,
|
| 681 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 682 |
+
base_num_attention_heads=base_num_attention_heads[i],
|
| 683 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads[i],
|
| 684 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 685 |
+
add_downsample=not is_final_block,
|
| 686 |
+
upcast_attention=upcast_attention,
|
| 687 |
+
)
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
# # Create mid block
|
| 691 |
+
self.mid_block = ControlNetXSCrossAttnMidBlock2D(
|
| 692 |
+
base_channels=block_out_channels[-1],
|
| 693 |
+
ctrl_channels=ctrl_block_out_channels[-1],
|
| 694 |
+
temb_channels=time_embed_dim,
|
| 695 |
+
norm_num_groups=norm_num_groups,
|
| 696 |
+
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
|
| 697 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 698 |
+
base_num_attention_heads=base_num_attention_heads[-1],
|
| 699 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads[-1],
|
| 700 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 701 |
+
upcast_attention=upcast_attention,
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
# # Create up blocks
|
| 705 |
+
up_blocks = []
|
| 706 |
+
rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
| 707 |
+
rev_num_attention_heads = list(reversed(base_num_attention_heads))
|
| 708 |
+
rev_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 709 |
+
|
| 710 |
+
# The skip connection channels are the output of the conv_in and of all the down subblocks
|
| 711 |
+
ctrl_skip_channels = [ctrl_block_out_channels[0]]
|
| 712 |
+
for i, out_channels in enumerate(ctrl_block_out_channels):
|
| 713 |
+
number_of_subblocks = (
|
| 714 |
+
3 if i < len(ctrl_block_out_channels) - 1 else 2
|
| 715 |
+
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
|
| 716 |
+
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
|
| 717 |
+
|
| 718 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 719 |
+
|
| 720 |
+
out_channels = reversed_block_out_channels[0]
|
| 721 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 722 |
+
prev_output_channel = out_channels
|
| 723 |
+
out_channels = reversed_block_out_channels[i]
|
| 724 |
+
in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 725 |
+
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
|
| 726 |
+
|
| 727 |
+
has_crossattn = "CrossAttn" in up_block_type
|
| 728 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 729 |
+
|
| 730 |
+
up_blocks.append(
|
| 731 |
+
ControlNetXSCrossAttnUpBlock2D(
|
| 732 |
+
in_channels=in_channels,
|
| 733 |
+
out_channels=out_channels,
|
| 734 |
+
prev_output_channel=prev_output_channel,
|
| 735 |
+
ctrl_skip_channels=ctrl_skip_channels_,
|
| 736 |
+
temb_channels=time_embed_dim,
|
| 737 |
+
resolution_idx=i,
|
| 738 |
+
has_crossattn=has_crossattn,
|
| 739 |
+
transformer_layers_per_block=rev_transformer_layers_per_block[i],
|
| 740 |
+
num_attention_heads=rev_num_attention_heads[i],
|
| 741 |
+
cross_attention_dim=rev_cross_attention_dim[i],
|
| 742 |
+
add_upsample=not is_final_block,
|
| 743 |
+
upcast_attention=upcast_attention,
|
| 744 |
+
norm_num_groups=norm_num_groups,
|
| 745 |
+
)
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
| 749 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
| 750 |
+
|
| 751 |
+
self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups)
|
| 752 |
+
self.base_conv_act = nn.SiLU()
|
| 753 |
+
self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1)
|
| 754 |
+
|
| 755 |
+
@classmethod
|
| 756 |
+
def from_unet(
|
| 757 |
+
cls,
|
| 758 |
+
unet: UNet2DConditionModel,
|
| 759 |
+
controlnet: Optional[ControlNetXSAdapter] = None,
|
| 760 |
+
size_ratio: Optional[float] = None,
|
| 761 |
+
ctrl_block_out_channels: Optional[List[float]] = None,
|
| 762 |
+
time_embedding_mix: Optional[float] = None,
|
| 763 |
+
ctrl_optional_kwargs: Optional[Dict] = None,
|
| 764 |
+
conditioning_channels: int = 3,
|
| 765 |
+
):
|
| 766 |
+
r"""
|
| 767 |
+
Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`]
|
| 768 |
+
.
|
| 769 |
+
|
| 770 |
+
Parameters:
|
| 771 |
+
unet (`UNet2DConditionModel`):
|
| 772 |
+
The UNet model we want to control.
|
| 773 |
+
controlnet (`ControlNetXSAdapter`):
|
| 774 |
+
The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS
|
| 775 |
+
adapter will be created.
|
| 776 |
+
size_ratio (float, *optional*, defaults to `None`):
|
| 777 |
+
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
|
| 778 |
+
ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`):
|
| 779 |
+
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details,
|
| 780 |
+
where this parameter is called `block_out_channels`.
|
| 781 |
+
time_embedding_mix (`float`, *optional*, defaults to None):
|
| 782 |
+
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
|
| 783 |
+
ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`):
|
| 784 |
+
Passed to the `init` of the new controlent if no controlent was given.
|
| 785 |
+
"""
|
| 786 |
+
if controlnet is None:
|
| 787 |
+
# controlnet = ControlNetXSAdapter.from_unet(
|
| 788 |
+
# unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs
|
| 789 |
+
# )
|
| 790 |
+
controlnet = ControlNetXSAdapter.from_unet(
|
| 791 |
+
unet, size_ratio, ctrl_block_out_channels, conditioning_channels=conditioning_channels
|
| 792 |
+
)
|
| 793 |
+
else:
|
| 794 |
+
if any(
|
| 795 |
+
o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs)
|
| 796 |
+
):
|
| 797 |
+
raise ValueError(
|
| 798 |
+
"When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs."
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
# # get params
|
| 802 |
+
params_for_unet = [
|
| 803 |
+
"sample_size",
|
| 804 |
+
"down_block_types",
|
| 805 |
+
"up_block_types",
|
| 806 |
+
"block_out_channels",
|
| 807 |
+
"norm_num_groups",
|
| 808 |
+
"cross_attention_dim",
|
| 809 |
+
"transformer_layers_per_block",
|
| 810 |
+
"addition_embed_type",
|
| 811 |
+
"addition_time_embed_dim",
|
| 812 |
+
"upcast_attention",
|
| 813 |
+
"time_cond_proj_dim",
|
| 814 |
+
"projection_class_embeddings_input_dim",
|
| 815 |
+
]
|
| 816 |
+
params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet}
|
| 817 |
+
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 818 |
+
params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
|
| 819 |
+
|
| 820 |
+
params_for_controlnet = [
|
| 821 |
+
"conditioning_channels",
|
| 822 |
+
"conditioning_embedding_out_channels",
|
| 823 |
+
"conditioning_channel_order",
|
| 824 |
+
"learn_time_embedding",
|
| 825 |
+
"block_out_channels",
|
| 826 |
+
"num_attention_heads",
|
| 827 |
+
"max_norm_num_groups",
|
| 828 |
+
]
|
| 829 |
+
params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet}
|
| 830 |
+
params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix
|
| 831 |
+
|
| 832 |
+
# # create model
|
| 833 |
+
model = cls.from_config({**params_for_unet, **params_for_controlnet})
|
| 834 |
+
|
| 835 |
+
# # load weights
|
| 836 |
+
# from unet
|
| 837 |
+
modules_from_unet = [
|
| 838 |
+
"time_embedding",
|
| 839 |
+
"conv_in",
|
| 840 |
+
"conv_norm_out",
|
| 841 |
+
"conv_out",
|
| 842 |
+
]
|
| 843 |
+
for m in modules_from_unet:
|
| 844 |
+
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
|
| 845 |
+
|
| 846 |
+
optional_modules_from_unet = [
|
| 847 |
+
"add_time_proj",
|
| 848 |
+
"add_embedding",
|
| 849 |
+
]
|
| 850 |
+
for m in optional_modules_from_unet:
|
| 851 |
+
if hasattr(unet, m) and getattr(unet, m) is not None:
|
| 852 |
+
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
|
| 853 |
+
|
| 854 |
+
# from controlnet
|
| 855 |
+
model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict())
|
| 856 |
+
model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict())
|
| 857 |
+
if controlnet.time_embedding is not None:
|
| 858 |
+
model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict())
|
| 859 |
+
model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
|
| 860 |
+
|
| 861 |
+
# from both
|
| 862 |
+
model.down_blocks = nn.ModuleList(
|
| 863 |
+
ControlNetXSCrossAttnDownBlock2D.from_modules(b, c)
|
| 864 |
+
for b, c in zip(unet.down_blocks, controlnet.down_blocks)
|
| 865 |
+
)
|
| 866 |
+
model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block)
|
| 867 |
+
model.up_blocks = nn.ModuleList(
|
| 868 |
+
ControlNetXSCrossAttnUpBlock2D.from_modules(b, c)
|
| 869 |
+
for b, c in zip(unet.up_blocks, controlnet.up_connections)
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
# ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel
|
| 873 |
+
model.to(unet.dtype)
|
| 874 |
+
|
| 875 |
+
return model
|
| 876 |
+
|
| 877 |
+
def freeze_unet_params(self) -> None:
|
| 878 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 879 |
+
tuning."""
|
| 880 |
+
# Freeze everything
|
| 881 |
+
for param in self.parameters():
|
| 882 |
+
param.requires_grad = True
|
| 883 |
+
|
| 884 |
+
# Unfreeze ControlNetXSAdapter
|
| 885 |
+
base_parts = [
|
| 886 |
+
"base_time_proj",
|
| 887 |
+
"base_time_embedding",
|
| 888 |
+
"base_add_time_proj",
|
| 889 |
+
"base_add_embedding",
|
| 890 |
+
"base_conv_in",
|
| 891 |
+
"base_conv_norm_out",
|
| 892 |
+
"base_conv_act",
|
| 893 |
+
"base_conv_out",
|
| 894 |
+
]
|
| 895 |
+
base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None]
|
| 896 |
+
for part in base_parts:
|
| 897 |
+
for param in part.parameters():
|
| 898 |
+
param.requires_grad = False
|
| 899 |
+
|
| 900 |
+
for d in self.down_blocks:
|
| 901 |
+
d.freeze_base_params()
|
| 902 |
+
self.mid_block.freeze_base_params()
|
| 903 |
+
for u in self.up_blocks:
|
| 904 |
+
u.freeze_base_params()
|
| 905 |
+
|
| 906 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 907 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 908 |
+
module.gradient_checkpointing = value
|
| 909 |
+
|
| 910 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel
|
| 911 |
+
@property
|
| 912 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 913 |
+
r"""
|
| 914 |
+
Returns:
|
| 915 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 916 |
+
indexed by its weight name.
|
| 917 |
+
"""
|
| 918 |
+
# set recursively
|
| 919 |
+
processors = {}
|
| 920 |
+
|
| 921 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 922 |
+
if hasattr(module, "get_processor"):
|
| 923 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 924 |
+
|
| 925 |
+
for sub_name, child in module.named_children():
|
| 926 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 927 |
+
|
| 928 |
+
return processors
|
| 929 |
+
|
| 930 |
+
for name, module in self.named_children():
|
| 931 |
+
fn_recursive_add_processors(name, module, processors)
|
| 932 |
+
|
| 933 |
+
return processors
|
| 934 |
+
|
| 935 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 936 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 937 |
+
r"""
|
| 938 |
+
Sets the attention processor to use to compute attention.
|
| 939 |
+
|
| 940 |
+
Parameters:
|
| 941 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 942 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 943 |
+
for **all** `Attention` layers.
|
| 944 |
+
|
| 945 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 946 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 947 |
+
|
| 948 |
+
"""
|
| 949 |
+
count = len(self.attn_processors.keys())
|
| 950 |
+
|
| 951 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 952 |
+
raise ValueError(
|
| 953 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 954 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 958 |
+
if hasattr(module, "set_processor"):
|
| 959 |
+
if not isinstance(processor, dict):
|
| 960 |
+
module.set_processor(processor)
|
| 961 |
+
else:
|
| 962 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 963 |
+
|
| 964 |
+
for sub_name, child in module.named_children():
|
| 965 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 966 |
+
|
| 967 |
+
for name, module in self.named_children():
|
| 968 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 969 |
+
|
| 970 |
+
@property
|
| 971 |
+
def attn_processors_unet(self) -> Dict[str, AttentionProcessor]:
|
| 972 |
+
r"""
|
| 973 |
+
Returns:
|
| 974 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 975 |
+
indexed by its weight name.
|
| 976 |
+
"""
|
| 977 |
+
# set recursively
|
| 978 |
+
processors = {}
|
| 979 |
+
|
| 980 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 981 |
+
if 'ctrl_' in name:
|
| 982 |
+
'''ip-adapter设置交叉注意力,attn_processor时,只获取unet的参数'''
|
| 983 |
+
return processors
|
| 984 |
+
|
| 985 |
+
if hasattr(module, "get_processor"):
|
| 986 |
+
# processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 987 |
+
# 为什么??? module.get_processor(return_deprecated_lora=True)返回值是None
|
| 988 |
+
processors[f"{name}.processor"] = module.processor
|
| 989 |
+
|
| 990 |
+
for sub_name, child in module.named_children():
|
| 991 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 992 |
+
|
| 993 |
+
return processors
|
| 994 |
+
|
| 995 |
+
for name, module in self.named_children():
|
| 996 |
+
fn_recursive_add_processors(name, module, processors)
|
| 997 |
+
|
| 998 |
+
return processors
|
| 999 |
+
|
| 1000 |
+
def set_attn_processor_unet(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 1001 |
+
r"""
|
| 1002 |
+
Sets the attention processor to use to compute attention.
|
| 1003 |
+
|
| 1004 |
+
Parameters:
|
| 1005 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 1006 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 1007 |
+
for **all** `Attention` layers.
|
| 1008 |
+
|
| 1009 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 1010 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 1011 |
+
|
| 1012 |
+
"""
|
| 1013 |
+
'''ip-adapter设置交叉注意力,set_attn_processor时,只针对unet设置,不为controlnetxs设置'''
|
| 1014 |
+
|
| 1015 |
+
count = len(self.attn_processors_unet.keys())
|
| 1016 |
+
|
| 1017 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 1018 |
+
raise ValueError(
|
| 1019 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 1020 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 1024 |
+
|
| 1025 |
+
if hasattr(module, "set_processor"):
|
| 1026 |
+
if 'ctrl_' in name:
|
| 1027 |
+
return
|
| 1028 |
+
|
| 1029 |
+
if not isinstance(processor, dict):
|
| 1030 |
+
module.set_processor(processor)
|
| 1031 |
+
else:
|
| 1032 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 1033 |
+
|
| 1034 |
+
for sub_name, child in module.named_children():
|
| 1035 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 1036 |
+
|
| 1037 |
+
for name, module in self.named_children():
|
| 1038 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 1039 |
+
|
| 1040 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 1041 |
+
def set_default_attn_processor(self):
|
| 1042 |
+
"""
|
| 1043 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 1044 |
+
"""
|
| 1045 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 1046 |
+
processor = AttnAddedKVProcessor()
|
| 1047 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 1048 |
+
processor = AttnProcessor()
|
| 1049 |
+
else:
|
| 1050 |
+
raise ValueError(
|
| 1051 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
self.set_attn_processor_cnxs(processor)
|
| 1055 |
+
|
| 1056 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
|
| 1057 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
| 1058 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
| 1059 |
+
|
| 1060 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
| 1061 |
+
|
| 1062 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
| 1063 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 1064 |
+
|
| 1065 |
+
Args:
|
| 1066 |
+
s1 (`float`):
|
| 1067 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 1068 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 1069 |
+
s2 (`float`):
|
| 1070 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 1071 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 1072 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 1073 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 1074 |
+
"""
|
| 1075 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1076 |
+
setattr(upsample_block, "s1", s1)
|
| 1077 |
+
setattr(upsample_block, "s2", s2)
|
| 1078 |
+
setattr(upsample_block, "b1", b1)
|
| 1079 |
+
setattr(upsample_block, "b2", b2)
|
| 1080 |
+
|
| 1081 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
|
| 1082 |
+
def disable_freeu(self):
|
| 1083 |
+
"""Disables the FreeU mechanism."""
|
| 1084 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
| 1085 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1086 |
+
for k in freeu_keys:
|
| 1087 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
| 1088 |
+
setattr(upsample_block, k, None)
|
| 1089 |
+
|
| 1090 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 1091 |
+
def fuse_qkv_projections(self):
|
| 1092 |
+
"""
|
| 1093 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 1094 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 1095 |
+
|
| 1096 |
+
<Tip warning={true}>
|
| 1097 |
+
|
| 1098 |
+
This API is 🧪 experimental.
|
| 1099 |
+
|
| 1100 |
+
</Tip>
|
| 1101 |
+
"""
|
| 1102 |
+
self.original_attn_processors = None
|
| 1103 |
+
|
| 1104 |
+
for _, attn_processor in self.attn_processors.items():
|
| 1105 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 1106 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 1107 |
+
|
| 1108 |
+
self.original_attn_processors = self.attn_processors
|
| 1109 |
+
|
| 1110 |
+
for module in self.modules():
|
| 1111 |
+
if isinstance(module, Attention):
|
| 1112 |
+
module.fuse_projections(fuse=True)
|
| 1113 |
+
|
| 1114 |
+
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 1115 |
+
def unfuse_qkv_projections(self):
|
| 1116 |
+
"""Disables the fused QKV projection if enabled.
|
| 1117 |
+
|
| 1118 |
+
<Tip warning={true}>
|
| 1119 |
+
|
| 1120 |
+
This API is 🧪 experimental.
|
| 1121 |
+
|
| 1122 |
+
</Tip>
|
| 1123 |
+
|
| 1124 |
+
"""
|
| 1125 |
+
if self.original_attn_processors is not None:
|
| 1126 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 1127 |
+
|
| 1128 |
+
def forward(
|
| 1129 |
+
self,
|
| 1130 |
+
sample: Tensor,
|
| 1131 |
+
timestep: Union[torch.Tensor, float, int],
|
| 1132 |
+
unet_encoder_hidden_states: torch.Tensor,
|
| 1133 |
+
cnxs_encoder_hidden_states: torch.Tensor,
|
| 1134 |
+
controlnet_cond: Optional[torch.Tensor] = None,
|
| 1135 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1136 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 1137 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1139 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1140 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 1141 |
+
return_dict: bool = True,
|
| 1142 |
+
apply_control: bool = True,
|
| 1143 |
+
) -> Union[ControlNetXSOutput, Tuple]:
|
| 1144 |
+
"""
|
| 1145 |
+
The [`ControlNetXSModel`] forward method.
|
| 1146 |
+
|
| 1147 |
+
Args:
|
| 1148 |
+
sample (`Tensor`):
|
| 1149 |
+
The noisy input tensor.
|
| 1150 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 1151 |
+
The number of timesteps to denoise an input.
|
| 1152 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 1153 |
+
The encoder hidden states.
|
| 1154 |
+
controlnet_cond (`Tensor`):
|
| 1155 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 1156 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 1157 |
+
How much the control model affects the base model outputs.
|
| 1158 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1159 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 1160 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1161 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 1162 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 1163 |
+
embeddings.
|
| 1164 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1165 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 1166 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 1167 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 1168 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 1169 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 1170 |
+
added_cond_kwargs (`dict`):
|
| 1171 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 1172 |
+
return_dict (`bool`, defaults to `True`):
|
| 1173 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
| 1174 |
+
apply_control (`bool`, defaults to `True`):
|
| 1175 |
+
If `False`, the input is run only through the base model.
|
| 1176 |
+
|
| 1177 |
+
Returns:
|
| 1178 |
+
[`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
|
| 1179 |
+
If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
|
| 1180 |
+
tuple is returned where the first element is the sample tensor.
|
| 1181 |
+
"""
|
| 1182 |
+
|
| 1183 |
+
# check channel order
|
| 1184 |
+
if self.config.ctrl_conditioning_channel_order == "bgr":
|
| 1185 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
| 1186 |
+
|
| 1187 |
+
# prepare attention_mask
|
| 1188 |
+
if attention_mask is not None:
|
| 1189 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 1190 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 1191 |
+
|
| 1192 |
+
# 1. time
|
| 1193 |
+
timesteps = timestep
|
| 1194 |
+
if not torch.is_tensor(timesteps):
|
| 1195 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 1196 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 1197 |
+
is_mps = sample.device.type == "mps"
|
| 1198 |
+
if isinstance(timestep, float):
|
| 1199 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 1200 |
+
else:
|
| 1201 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 1202 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 1203 |
+
elif len(timesteps.shape) == 0:
|
| 1204 |
+
timesteps = timesteps[None].to(sample.device)
|
| 1205 |
+
|
| 1206 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1207 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 1208 |
+
|
| 1209 |
+
t_emb = self.base_time_proj(timesteps)
|
| 1210 |
+
|
| 1211 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 1212 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 1213 |
+
# there might be better ways to encapsulate this.
|
| 1214 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 1215 |
+
|
| 1216 |
+
if self.config.ctrl_learn_time_embedding and apply_control:
|
| 1217 |
+
ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond)
|
| 1218 |
+
base_temb = self.base_time_embedding(t_emb, timestep_cond)
|
| 1219 |
+
interpolation_param = self.config.time_embedding_mix**0.3
|
| 1220 |
+
|
| 1221 |
+
temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
|
| 1222 |
+
else:
|
| 1223 |
+
temb = self.base_time_embedding(t_emb)
|
| 1224 |
+
|
| 1225 |
+
# added time & text embeddings
|
| 1226 |
+
aug_emb = None
|
| 1227 |
+
|
| 1228 |
+
if self.config.addition_embed_type is None:
|
| 1229 |
+
pass
|
| 1230 |
+
elif self.config.addition_embed_type == "text_time":
|
| 1231 |
+
# SDXL - style
|
| 1232 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 1233 |
+
raise ValueError(
|
| 1234 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 1235 |
+
)
|
| 1236 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 1237 |
+
if "time_ids" not in added_cond_kwargs:
|
| 1238 |
+
raise ValueError(
|
| 1239 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 1240 |
+
)
|
| 1241 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 1242 |
+
time_embeds = self.base_add_time_proj(time_ids.flatten())
|
| 1243 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 1244 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 1245 |
+
add_embeds = add_embeds.to(temb.dtype)
|
| 1246 |
+
aug_emb = self.base_add_embedding(add_embeds)
|
| 1247 |
+
else:
|
| 1248 |
+
raise ValueError(
|
| 1249 |
+
f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported."
|
| 1250 |
+
)
|
| 1251 |
+
|
| 1252 |
+
temb = temb + aug_emb if aug_emb is not None else temb
|
| 1253 |
+
|
| 1254 |
+
# text embeddings
|
| 1255 |
+
# cemb = unet_encoder_hidden_states
|
| 1256 |
+
|
| 1257 |
+
# Preparation
|
| 1258 |
+
h_ctrl = h_base = sample
|
| 1259 |
+
hs_base, hs_ctrl = [], []
|
| 1260 |
+
|
| 1261 |
+
# Cross Control
|
| 1262 |
+
guided_hint = self.controlnet_cond_embedding(controlnet_cond)
|
| 1263 |
+
|
| 1264 |
+
# 1 - conv in & down
|
| 1265 |
+
|
| 1266 |
+
h_base = self.base_conv_in(h_base)
|
| 1267 |
+
h_ctrl = self.ctrl_conv_in(h_ctrl)
|
| 1268 |
+
if guided_hint is not None:
|
| 1269 |
+
h_ctrl += guided_hint
|
| 1270 |
+
if apply_control:
|
| 1271 |
+
h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base
|
| 1272 |
+
|
| 1273 |
+
hs_base.append(h_base)
|
| 1274 |
+
hs_ctrl.append(h_ctrl)
|
| 1275 |
+
|
| 1276 |
+
for down in self.down_blocks:
|
| 1277 |
+
h_base, h_ctrl, residual_hb, residual_hc = down(
|
| 1278 |
+
hidden_states_base=h_base,
|
| 1279 |
+
hidden_states_ctrl=h_ctrl,
|
| 1280 |
+
temb=temb,
|
| 1281 |
+
# encoder_hidden_states=cemb,
|
| 1282 |
+
unet_encoder_hidden_states=unet_encoder_hidden_states,
|
| 1283 |
+
cnxs_encoder_hidden_states=cnxs_encoder_hidden_states,
|
| 1284 |
+
conditioning_scale=conditioning_scale,
|
| 1285 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1286 |
+
attention_mask=attention_mask,
|
| 1287 |
+
apply_control=apply_control,
|
| 1288 |
+
)
|
| 1289 |
+
hs_base.extend(residual_hb)
|
| 1290 |
+
hs_ctrl.extend(residual_hc)
|
| 1291 |
+
|
| 1292 |
+
# 2 - mid
|
| 1293 |
+
h_base, h_ctrl = self.mid_block(
|
| 1294 |
+
hidden_states_base=h_base,
|
| 1295 |
+
hidden_states_ctrl=h_ctrl,
|
| 1296 |
+
temb=temb,
|
| 1297 |
+
# encoder_hidden_states=cemb,
|
| 1298 |
+
unet_encoder_hidden_states=unet_encoder_hidden_states,
|
| 1299 |
+
cnxs_encoder_hidden_states=cnxs_encoder_hidden_states,
|
| 1300 |
+
conditioning_scale=conditioning_scale,
|
| 1301 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1302 |
+
attention_mask=attention_mask,
|
| 1303 |
+
apply_control=apply_control,
|
| 1304 |
+
)
|
| 1305 |
+
|
| 1306 |
+
# 3 - up
|
| 1307 |
+
for up in self.up_blocks:
|
| 1308 |
+
n_resnets = len(up.resnets)
|
| 1309 |
+
skips_hb = hs_base[-n_resnets:]
|
| 1310 |
+
skips_hc = hs_ctrl[-n_resnets:]
|
| 1311 |
+
hs_base = hs_base[:-n_resnets]
|
| 1312 |
+
hs_ctrl = hs_ctrl[:-n_resnets]
|
| 1313 |
+
h_base = up(
|
| 1314 |
+
hidden_states=h_base,
|
| 1315 |
+
res_hidden_states_tuple_base=skips_hb,
|
| 1316 |
+
res_hidden_states_tuple_ctrl=skips_hc,
|
| 1317 |
+
temb=temb,
|
| 1318 |
+
encoder_hidden_states=unet_encoder_hidden_states,
|
| 1319 |
+
conditioning_scale=conditioning_scale,
|
| 1320 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1321 |
+
attention_mask=attention_mask,
|
| 1322 |
+
apply_control=apply_control,
|
| 1323 |
+
)
|
| 1324 |
+
|
| 1325 |
+
# 4 - conv out
|
| 1326 |
+
h_base = self.base_conv_norm_out(h_base)
|
| 1327 |
+
h_base = self.base_conv_act(h_base)
|
| 1328 |
+
h_base = self.base_conv_out(h_base)
|
| 1329 |
+
|
| 1330 |
+
if not return_dict:
|
| 1331 |
+
return (h_base,)
|
| 1332 |
+
|
| 1333 |
+
return ControlNetXSOutput(sample=h_base)
|
| 1334 |
+
|
| 1335 |
+
|
| 1336 |
+
class ControlNetXSCrossAttnDownBlock2D(nn.Module):
|
| 1337 |
+
def __init__(
|
| 1338 |
+
self,
|
| 1339 |
+
base_in_channels: int,
|
| 1340 |
+
base_out_channels: int,
|
| 1341 |
+
ctrl_in_channels: int,
|
| 1342 |
+
ctrl_out_channels: int,
|
| 1343 |
+
temb_channels: int,
|
| 1344 |
+
norm_num_groups: int = 32,
|
| 1345 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 1346 |
+
has_crossattn=True,
|
| 1347 |
+
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
|
| 1348 |
+
base_num_attention_heads: Optional[int] = 1,
|
| 1349 |
+
ctrl_num_attention_heads: Optional[int] = 1,
|
| 1350 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 1351 |
+
add_downsample: bool = True,
|
| 1352 |
+
upcast_attention: Optional[bool] = False,
|
| 1353 |
+
):
|
| 1354 |
+
super().__init__()
|
| 1355 |
+
base_resnets = []
|
| 1356 |
+
base_attentions = []
|
| 1357 |
+
ctrl_resnets = []
|
| 1358 |
+
ctrl_attentions = []
|
| 1359 |
+
ctrl_to_base = []
|
| 1360 |
+
base_to_ctrl = []
|
| 1361 |
+
|
| 1362 |
+
num_layers = 2 # only support sd + sdxl
|
| 1363 |
+
|
| 1364 |
+
if isinstance(transformer_layers_per_block, int):
|
| 1365 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 1366 |
+
|
| 1367 |
+
for i in range(num_layers):
|
| 1368 |
+
base_in_channels = base_in_channels if i == 0 else base_out_channels
|
| 1369 |
+
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
|
| 1370 |
+
|
| 1371 |
+
# Before the resnet/attention application, information is concatted from base to control.
|
| 1372 |
+
# Concat doesn't require change in number of channels
|
| 1373 |
+
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
|
| 1374 |
+
|
| 1375 |
+
base_resnets.append(
|
| 1376 |
+
ResnetBlock2D(
|
| 1377 |
+
in_channels=base_in_channels,
|
| 1378 |
+
out_channels=base_out_channels,
|
| 1379 |
+
temb_channels=temb_channels,
|
| 1380 |
+
groups=norm_num_groups,
|
| 1381 |
+
)
|
| 1382 |
+
)
|
| 1383 |
+
ctrl_resnets.append(
|
| 1384 |
+
ResnetBlock2D(
|
| 1385 |
+
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
|
| 1386 |
+
out_channels=ctrl_out_channels,
|
| 1387 |
+
temb_channels=temb_channels,
|
| 1388 |
+
groups=find_largest_factor(
|
| 1389 |
+
ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups
|
| 1390 |
+
),
|
| 1391 |
+
groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
|
| 1392 |
+
eps=1e-5,
|
| 1393 |
+
)
|
| 1394 |
+
)
|
| 1395 |
+
|
| 1396 |
+
if has_crossattn:
|
| 1397 |
+
base_attentions.append(
|
| 1398 |
+
Transformer2DModel(
|
| 1399 |
+
base_num_attention_heads,
|
| 1400 |
+
base_out_channels // base_num_attention_heads,
|
| 1401 |
+
in_channels=base_out_channels,
|
| 1402 |
+
num_layers=transformer_layers_per_block[i],
|
| 1403 |
+
cross_attention_dim=cross_attention_dim,
|
| 1404 |
+
use_linear_projection=True,
|
| 1405 |
+
upcast_attention=upcast_attention,
|
| 1406 |
+
norm_num_groups=norm_num_groups,
|
| 1407 |
+
)
|
| 1408 |
+
)
|
| 1409 |
+
ctrl_attentions.append(
|
| 1410 |
+
Transformer2DModel(
|
| 1411 |
+
ctrl_num_attention_heads,
|
| 1412 |
+
ctrl_out_channels // ctrl_num_attention_heads,
|
| 1413 |
+
in_channels=ctrl_out_channels,
|
| 1414 |
+
num_layers=transformer_layers_per_block[i],
|
| 1415 |
+
cross_attention_dim=cross_attention_dim,
|
| 1416 |
+
use_linear_projection=True,
|
| 1417 |
+
upcast_attention=upcast_attention,
|
| 1418 |
+
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
|
| 1419 |
+
)
|
| 1420 |
+
)
|
| 1421 |
+
|
| 1422 |
+
# After the resnet/attention application, information is added from control to base
|
| 1423 |
+
# Addition requires change in number of channels
|
| 1424 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 1425 |
+
|
| 1426 |
+
if add_downsample:
|
| 1427 |
+
# Before the downsampler application, information is concatted from base to control
|
| 1428 |
+
# Concat doesn't require change in number of channels
|
| 1429 |
+
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
|
| 1430 |
+
|
| 1431 |
+
self.base_downsamplers = Downsample2D(
|
| 1432 |
+
base_out_channels, use_conv=True, out_channels=base_out_channels, name="op"
|
| 1433 |
+
)
|
| 1434 |
+
self.ctrl_downsamplers = Downsample2D(
|
| 1435 |
+
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
|
| 1436 |
+
)
|
| 1437 |
+
|
| 1438 |
+
# After the downsampler application, information is added from control to base
|
| 1439 |
+
# Addition requires change in number of channels
|
| 1440 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 1441 |
+
else:
|
| 1442 |
+
self.base_downsamplers = None
|
| 1443 |
+
self.ctrl_downsamplers = None
|
| 1444 |
+
|
| 1445 |
+
self.base_resnets = nn.ModuleList(base_resnets)
|
| 1446 |
+
self.ctrl_resnets = nn.ModuleList(ctrl_resnets)
|
| 1447 |
+
self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers
|
| 1448 |
+
self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers
|
| 1449 |
+
self.base_to_ctrl = nn.ModuleList(base_to_ctrl)
|
| 1450 |
+
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
|
| 1451 |
+
|
| 1452 |
+
self.gradient_checkpointing = False
|
| 1453 |
+
|
| 1454 |
+
@classmethod
|
| 1455 |
+
def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter):
|
| 1456 |
+
# get params
|
| 1457 |
+
def get_first_cross_attention(block):
|
| 1458 |
+
return block.attentions[0].transformer_blocks[0].attn2
|
| 1459 |
+
|
| 1460 |
+
base_in_channels = base_downblock.resnets[0].in_channels
|
| 1461 |
+
base_out_channels = base_downblock.resnets[0].out_channels
|
| 1462 |
+
ctrl_in_channels = (
|
| 1463 |
+
ctrl_downblock.resnets[0].in_channels - base_in_channels
|
| 1464 |
+
) # base channels are concatted to ctrl channels in init
|
| 1465 |
+
ctrl_out_channels = ctrl_downblock.resnets[0].out_channels
|
| 1466 |
+
temb_channels = base_downblock.resnets[0].time_emb_proj.in_features
|
| 1467 |
+
num_groups = base_downblock.resnets[0].norm1.num_groups
|
| 1468 |
+
ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups
|
| 1469 |
+
if hasattr(base_downblock, "attentions"):
|
| 1470 |
+
has_crossattn = True
|
| 1471 |
+
transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks)
|
| 1472 |
+
base_num_attention_heads = get_first_cross_attention(base_downblock).heads
|
| 1473 |
+
ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads
|
| 1474 |
+
cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
|
| 1475 |
+
upcast_attention = get_first_cross_attention(base_downblock).upcast_attention
|
| 1476 |
+
else:
|
| 1477 |
+
has_crossattn = False
|
| 1478 |
+
transformer_layers_per_block = None
|
| 1479 |
+
base_num_attention_heads = None
|
| 1480 |
+
ctrl_num_attention_heads = None
|
| 1481 |
+
cross_attention_dim = None
|
| 1482 |
+
upcast_attention = None
|
| 1483 |
+
add_downsample = base_downblock.downsamplers is not None
|
| 1484 |
+
|
| 1485 |
+
# create model
|
| 1486 |
+
model = cls(
|
| 1487 |
+
base_in_channels=base_in_channels,
|
| 1488 |
+
base_out_channels=base_out_channels,
|
| 1489 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 1490 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 1491 |
+
temb_channels=temb_channels,
|
| 1492 |
+
norm_num_groups=num_groups,
|
| 1493 |
+
ctrl_max_norm_num_groups=ctrl_num_groups,
|
| 1494 |
+
has_crossattn=has_crossattn,
|
| 1495 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1496 |
+
base_num_attention_heads=base_num_attention_heads,
|
| 1497 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads,
|
| 1498 |
+
cross_attention_dim=cross_attention_dim,
|
| 1499 |
+
add_downsample=add_downsample,
|
| 1500 |
+
upcast_attention=upcast_attention,
|
| 1501 |
+
)
|
| 1502 |
+
|
| 1503 |
+
# # load weights
|
| 1504 |
+
model.base_resnets.load_state_dict(base_downblock.resnets.state_dict())
|
| 1505 |
+
model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict())
|
| 1506 |
+
if has_crossattn:
|
| 1507 |
+
model.base_attentions.load_state_dict(base_downblock.attentions.state_dict())
|
| 1508 |
+
model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict())
|
| 1509 |
+
if add_downsample:
|
| 1510 |
+
model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict())
|
| 1511 |
+
model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict())
|
| 1512 |
+
model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict())
|
| 1513 |
+
model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict())
|
| 1514 |
+
|
| 1515 |
+
return model
|
| 1516 |
+
|
| 1517 |
+
def freeze_base_params(self) -> None:
|
| 1518 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1519 |
+
tuning."""
|
| 1520 |
+
# Unfreeze everything
|
| 1521 |
+
for param in self.parameters():
|
| 1522 |
+
param.requires_grad = True
|
| 1523 |
+
|
| 1524 |
+
# Freeze base part
|
| 1525 |
+
base_parts = [self.base_resnets]
|
| 1526 |
+
if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones
|
| 1527 |
+
base_parts.append(self.base_attentions)
|
| 1528 |
+
if self.base_downsamplers is not None:
|
| 1529 |
+
base_parts.append(self.base_downsamplers)
|
| 1530 |
+
for part in base_parts:
|
| 1531 |
+
for param in part.parameters():
|
| 1532 |
+
param.requires_grad = False
|
| 1533 |
+
|
| 1534 |
+
def forward(
|
| 1535 |
+
self,
|
| 1536 |
+
hidden_states_base: Tensor,
|
| 1537 |
+
temb: Tensor,
|
| 1538 |
+
unet_encoder_hidden_states: Optional[Tensor] = None,
|
| 1539 |
+
cnxs_encoder_hidden_states: Optional[Tensor] = None,
|
| 1540 |
+
hidden_states_ctrl: Optional[Tensor] = None,
|
| 1541 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1542 |
+
attention_mask: Optional[Tensor] = None,
|
| 1543 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1544 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1545 |
+
apply_control: bool = True,
|
| 1546 |
+
) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
|
| 1547 |
+
if cross_attention_kwargs is not None:
|
| 1548 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1549 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1550 |
+
|
| 1551 |
+
h_base = hidden_states_base
|
| 1552 |
+
h_ctrl = hidden_states_ctrl
|
| 1553 |
+
|
| 1554 |
+
base_output_states = ()
|
| 1555 |
+
ctrl_output_states = ()
|
| 1556 |
+
|
| 1557 |
+
base_blocks = list(zip(self.base_resnets, self.base_attentions))
|
| 1558 |
+
ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions))
|
| 1559 |
+
|
| 1560 |
+
def create_custom_forward(module, return_dict=None):
|
| 1561 |
+
def custom_forward(*inputs):
|
| 1562 |
+
if return_dict is not None:
|
| 1563 |
+
return module(*inputs, return_dict=return_dict)
|
| 1564 |
+
else:
|
| 1565 |
+
return module(*inputs)
|
| 1566 |
+
|
| 1567 |
+
return custom_forward
|
| 1568 |
+
|
| 1569 |
+
for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip(
|
| 1570 |
+
base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base
|
| 1571 |
+
):
|
| 1572 |
+
# concat base -> ctrl
|
| 1573 |
+
if apply_control:
|
| 1574 |
+
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
|
| 1575 |
+
|
| 1576 |
+
# apply base subblock
|
| 1577 |
+
if self.training and self.gradient_checkpointing:
|
| 1578 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1579 |
+
h_base = torch.utils.checkpoint.checkpoint(
|
| 1580 |
+
create_custom_forward(b_res),
|
| 1581 |
+
h_base,
|
| 1582 |
+
temb,
|
| 1583 |
+
**ckpt_kwargs,
|
| 1584 |
+
)
|
| 1585 |
+
else:
|
| 1586 |
+
h_base = b_res(h_base, temb)
|
| 1587 |
+
|
| 1588 |
+
if b_attn is not None:
|
| 1589 |
+
h_base = b_attn(
|
| 1590 |
+
h_base,
|
| 1591 |
+
# 11-07
|
| 1592 |
+
encoder_hidden_states=unet_encoder_hidden_states,
|
| 1593 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1594 |
+
attention_mask=attention_mask,
|
| 1595 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1596 |
+
return_dict=False,
|
| 1597 |
+
)[0]
|
| 1598 |
+
|
| 1599 |
+
# apply ctrl subblock
|
| 1600 |
+
if apply_control:
|
| 1601 |
+
if self.training and self.gradient_checkpointing:
|
| 1602 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1603 |
+
h_ctrl = torch.utils.checkpoint.checkpoint(
|
| 1604 |
+
create_custom_forward(c_res),
|
| 1605 |
+
h_ctrl,
|
| 1606 |
+
temb,
|
| 1607 |
+
**ckpt_kwargs,
|
| 1608 |
+
)
|
| 1609 |
+
else:
|
| 1610 |
+
h_ctrl = c_res(h_ctrl, temb)
|
| 1611 |
+
if c_attn is not None:
|
| 1612 |
+
h_ctrl = c_attn(
|
| 1613 |
+
h_ctrl,
|
| 1614 |
+
# 11-07
|
| 1615 |
+
encoder_hidden_states=cnxs_encoder_hidden_states,
|
| 1616 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1617 |
+
attention_mask=attention_mask,
|
| 1618 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1619 |
+
return_dict=False,
|
| 1620 |
+
)[0]
|
| 1621 |
+
|
| 1622 |
+
# add ctrl -> base
|
| 1623 |
+
if apply_control:
|
| 1624 |
+
h_base = h_base + c2b(h_ctrl) * conditioning_scale
|
| 1625 |
+
|
| 1626 |
+
base_output_states = base_output_states + (h_base,)
|
| 1627 |
+
ctrl_output_states = ctrl_output_states + (h_ctrl,)
|
| 1628 |
+
|
| 1629 |
+
if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler
|
| 1630 |
+
b2c = self.base_to_ctrl[-1]
|
| 1631 |
+
c2b = self.ctrl_to_base[-1]
|
| 1632 |
+
|
| 1633 |
+
# concat base -> ctrl
|
| 1634 |
+
if apply_control:
|
| 1635 |
+
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
|
| 1636 |
+
# apply base subblock
|
| 1637 |
+
h_base = self.base_downsamplers(h_base)
|
| 1638 |
+
# apply ctrl subblock
|
| 1639 |
+
if apply_control:
|
| 1640 |
+
h_ctrl = self.ctrl_downsamplers(h_ctrl)
|
| 1641 |
+
# add ctrl -> base
|
| 1642 |
+
if apply_control:
|
| 1643 |
+
h_base = h_base + c2b(h_ctrl) * conditioning_scale
|
| 1644 |
+
|
| 1645 |
+
base_output_states = base_output_states + (h_base,)
|
| 1646 |
+
ctrl_output_states = ctrl_output_states + (h_ctrl,)
|
| 1647 |
+
|
| 1648 |
+
return h_base, h_ctrl, base_output_states, ctrl_output_states
|
| 1649 |
+
|
| 1650 |
+
|
| 1651 |
+
class ControlNetXSCrossAttnMidBlock2D(nn.Module):
|
| 1652 |
+
def __init__(
|
| 1653 |
+
self,
|
| 1654 |
+
base_channels: int,
|
| 1655 |
+
ctrl_channels: int,
|
| 1656 |
+
temb_channels: Optional[int] = None,
|
| 1657 |
+
norm_num_groups: int = 32,
|
| 1658 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 1659 |
+
transformer_layers_per_block: int = 1,
|
| 1660 |
+
base_num_attention_heads: Optional[int] = 1,
|
| 1661 |
+
ctrl_num_attention_heads: Optional[int] = 1,
|
| 1662 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 1663 |
+
upcast_attention: bool = False,
|
| 1664 |
+
):
|
| 1665 |
+
super().__init__()
|
| 1666 |
+
|
| 1667 |
+
# Before the midblock application, information is concatted from base to control.
|
| 1668 |
+
# Concat doesn't require change in number of channels
|
| 1669 |
+
self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
|
| 1670 |
+
|
| 1671 |
+
self.base_midblock = UNetMidBlock2DCrossAttn(
|
| 1672 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1673 |
+
in_channels=base_channels,
|
| 1674 |
+
temb_channels=temb_channels,
|
| 1675 |
+
resnet_groups=norm_num_groups,
|
| 1676 |
+
cross_attention_dim=cross_attention_dim,
|
| 1677 |
+
num_attention_heads=base_num_attention_heads,
|
| 1678 |
+
use_linear_projection=True,
|
| 1679 |
+
upcast_attention=upcast_attention,
|
| 1680 |
+
)
|
| 1681 |
+
|
| 1682 |
+
self.ctrl_midblock = UNetMidBlock2DCrossAttn(
|
| 1683 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1684 |
+
in_channels=ctrl_channels + base_channels,
|
| 1685 |
+
out_channels=ctrl_channels,
|
| 1686 |
+
temb_channels=temb_channels,
|
| 1687 |
+
# number or norm groups must divide both in_channels and out_channels
|
| 1688 |
+
resnet_groups=find_largest_factor(
|
| 1689 |
+
gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups
|
| 1690 |
+
),
|
| 1691 |
+
cross_attention_dim=cross_attention_dim,
|
| 1692 |
+
num_attention_heads=ctrl_num_attention_heads,
|
| 1693 |
+
use_linear_projection=True,
|
| 1694 |
+
upcast_attention=upcast_attention,
|
| 1695 |
+
)
|
| 1696 |
+
|
| 1697 |
+
# After the midblock application, information is added from control to base
|
| 1698 |
+
# Addition requires change in number of channels
|
| 1699 |
+
self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
|
| 1700 |
+
|
| 1701 |
+
self.gradient_checkpointing = False
|
| 1702 |
+
|
| 1703 |
+
@classmethod
|
| 1704 |
+
def from_modules(
|
| 1705 |
+
cls,
|
| 1706 |
+
base_midblock: UNetMidBlock2DCrossAttn,
|
| 1707 |
+
ctrl_midblock: MidBlockControlNetXSAdapter,
|
| 1708 |
+
):
|
| 1709 |
+
base_to_ctrl = ctrl_midblock.base_to_ctrl
|
| 1710 |
+
ctrl_to_base = ctrl_midblock.ctrl_to_base
|
| 1711 |
+
ctrl_midblock = ctrl_midblock.midblock
|
| 1712 |
+
|
| 1713 |
+
# get params
|
| 1714 |
+
def get_first_cross_attention(midblock):
|
| 1715 |
+
return midblock.attentions[0].transformer_blocks[0].attn2
|
| 1716 |
+
|
| 1717 |
+
base_channels = ctrl_to_base.out_channels
|
| 1718 |
+
ctrl_channels = ctrl_to_base.in_channels
|
| 1719 |
+
transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks)
|
| 1720 |
+
temb_channels = base_midblock.resnets[0].time_emb_proj.in_features
|
| 1721 |
+
num_groups = base_midblock.resnets[0].norm1.num_groups
|
| 1722 |
+
ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups
|
| 1723 |
+
base_num_attention_heads = get_first_cross_attention(base_midblock).heads
|
| 1724 |
+
ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads
|
| 1725 |
+
cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim
|
| 1726 |
+
upcast_attention = get_first_cross_attention(base_midblock).upcast_attention
|
| 1727 |
+
|
| 1728 |
+
# create model
|
| 1729 |
+
model = cls(
|
| 1730 |
+
base_channels=base_channels,
|
| 1731 |
+
ctrl_channels=ctrl_channels,
|
| 1732 |
+
temb_channels=temb_channels,
|
| 1733 |
+
norm_num_groups=num_groups,
|
| 1734 |
+
ctrl_max_norm_num_groups=ctrl_num_groups,
|
| 1735 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1736 |
+
base_num_attention_heads=base_num_attention_heads,
|
| 1737 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads,
|
| 1738 |
+
cross_attention_dim=cross_attention_dim,
|
| 1739 |
+
upcast_attention=upcast_attention,
|
| 1740 |
+
)
|
| 1741 |
+
|
| 1742 |
+
# load weights
|
| 1743 |
+
model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict())
|
| 1744 |
+
model.base_midblock.load_state_dict(base_midblock.state_dict())
|
| 1745 |
+
model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict())
|
| 1746 |
+
model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict())
|
| 1747 |
+
|
| 1748 |
+
return model
|
| 1749 |
+
|
| 1750 |
+
def freeze_base_params(self) -> None:
|
| 1751 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1752 |
+
tuning."""
|
| 1753 |
+
# Unfreeze everything
|
| 1754 |
+
for param in self.parameters():
|
| 1755 |
+
param.requires_grad = True
|
| 1756 |
+
|
| 1757 |
+
# Freeze base part
|
| 1758 |
+
for param in self.base_midblock.parameters():
|
| 1759 |
+
param.requires_grad = False
|
| 1760 |
+
|
| 1761 |
+
def forward(
|
| 1762 |
+
self,
|
| 1763 |
+
hidden_states_base: Tensor,
|
| 1764 |
+
temb: Tensor,
|
| 1765 |
+
unet_encoder_hidden_states: Optional[Tensor] = None,
|
| 1766 |
+
cnxs_encoder_hidden_states: Optional[Tensor] = None,
|
| 1767 |
+
hidden_states_ctrl: Optional[Tensor] = None,
|
| 1768 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1769 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1770 |
+
attention_mask: Optional[Tensor] = None,
|
| 1771 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1772 |
+
apply_control: bool = True,
|
| 1773 |
+
) -> Tuple[Tensor, Tensor]:
|
| 1774 |
+
if cross_attention_kwargs is not None:
|
| 1775 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1776 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1777 |
+
|
| 1778 |
+
h_base = hidden_states_base
|
| 1779 |
+
h_ctrl = hidden_states_ctrl
|
| 1780 |
+
|
| 1781 |
+
# joint_args = {
|
| 1782 |
+
# "temb": temb,
|
| 1783 |
+
# "encoder_hidden_states": encoder_hidden_states,
|
| 1784 |
+
# "attention_mask": attention_mask,
|
| 1785 |
+
# "cross_attention_kwargs": cross_attention_kwargs,
|
| 1786 |
+
# "encoder_attention_mask": encoder_attention_mask,
|
| 1787 |
+
# }
|
| 1788 |
+
unet_joint_args = {
|
| 1789 |
+
"temb": temb,
|
| 1790 |
+
"encoder_hidden_states": unet_encoder_hidden_states,
|
| 1791 |
+
"attention_mask": attention_mask,
|
| 1792 |
+
"cross_attention_kwargs": cross_attention_kwargs,
|
| 1793 |
+
"encoder_attention_mask": encoder_attention_mask,
|
| 1794 |
+
}
|
| 1795 |
+
|
| 1796 |
+
cnxs_joint_args = {
|
| 1797 |
+
"temb": temb,
|
| 1798 |
+
"encoder_hidden_states": cnxs_encoder_hidden_states,
|
| 1799 |
+
"attention_mask": attention_mask,
|
| 1800 |
+
"cross_attention_kwargs": cross_attention_kwargs,
|
| 1801 |
+
"encoder_attention_mask": encoder_attention_mask,
|
| 1802 |
+
}
|
| 1803 |
+
|
| 1804 |
+
if apply_control:
|
| 1805 |
+
h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl
|
| 1806 |
+
h_base = self.base_midblock(h_base, **unet_joint_args) # apply base mid block
|
| 1807 |
+
if apply_control:
|
| 1808 |
+
h_ctrl = self.ctrl_midblock(h_ctrl, **cnxs_joint_args) # apply ctrl mid block
|
| 1809 |
+
h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base
|
| 1810 |
+
|
| 1811 |
+
return h_base, h_ctrl
|
| 1812 |
+
|
| 1813 |
+
|
| 1814 |
+
class ControlNetXSCrossAttnUpBlock2D(nn.Module):
|
| 1815 |
+
def __init__(
|
| 1816 |
+
self,
|
| 1817 |
+
in_channels: int,
|
| 1818 |
+
out_channels: int,
|
| 1819 |
+
prev_output_channel: int,
|
| 1820 |
+
ctrl_skip_channels: List[int],
|
| 1821 |
+
temb_channels: int,
|
| 1822 |
+
norm_num_groups: int = 32,
|
| 1823 |
+
resolution_idx: Optional[int] = None,
|
| 1824 |
+
has_crossattn=True,
|
| 1825 |
+
transformer_layers_per_block: int = 1,
|
| 1826 |
+
num_attention_heads: int = 1,
|
| 1827 |
+
cross_attention_dim: int = 1024,
|
| 1828 |
+
add_upsample: bool = True,
|
| 1829 |
+
upcast_attention: bool = False,
|
| 1830 |
+
):
|
| 1831 |
+
super().__init__()
|
| 1832 |
+
resnets = []
|
| 1833 |
+
attentions = []
|
| 1834 |
+
ctrl_to_base = []
|
| 1835 |
+
|
| 1836 |
+
num_layers = 3 # only support sd + sdxl
|
| 1837 |
+
|
| 1838 |
+
self.has_cross_attention = has_crossattn
|
| 1839 |
+
self.num_attention_heads = num_attention_heads
|
| 1840 |
+
|
| 1841 |
+
if isinstance(transformer_layers_per_block, int):
|
| 1842 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 1843 |
+
|
| 1844 |
+
for i in range(num_layers):
|
| 1845 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1846 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1847 |
+
|
| 1848 |
+
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
|
| 1849 |
+
|
| 1850 |
+
resnets.append(
|
| 1851 |
+
ResnetBlock2D(
|
| 1852 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1853 |
+
out_channels=out_channels,
|
| 1854 |
+
temb_channels=temb_channels,
|
| 1855 |
+
groups=norm_num_groups,
|
| 1856 |
+
)
|
| 1857 |
+
)
|
| 1858 |
+
|
| 1859 |
+
if has_crossattn:
|
| 1860 |
+
attentions.append(
|
| 1861 |
+
Transformer2DModel(
|
| 1862 |
+
num_attention_heads,
|
| 1863 |
+
out_channels // num_attention_heads,
|
| 1864 |
+
in_channels=out_channels,
|
| 1865 |
+
num_layers=transformer_layers_per_block[i],
|
| 1866 |
+
cross_attention_dim=cross_attention_dim,
|
| 1867 |
+
use_linear_projection=True,
|
| 1868 |
+
upcast_attention=upcast_attention,
|
| 1869 |
+
norm_num_groups=norm_num_groups,
|
| 1870 |
+
)
|
| 1871 |
+
)
|
| 1872 |
+
|
| 1873 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1874 |
+
self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers
|
| 1875 |
+
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
|
| 1876 |
+
|
| 1877 |
+
if add_upsample:
|
| 1878 |
+
self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels)
|
| 1879 |
+
else:
|
| 1880 |
+
self.upsamplers = None
|
| 1881 |
+
|
| 1882 |
+
self.gradient_checkpointing = False
|
| 1883 |
+
self.resolution_idx = resolution_idx
|
| 1884 |
+
|
| 1885 |
+
@classmethod
|
| 1886 |
+
def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter):
|
| 1887 |
+
ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base
|
| 1888 |
+
|
| 1889 |
+
# get params
|
| 1890 |
+
def get_first_cross_attention(block):
|
| 1891 |
+
return block.attentions[0].transformer_blocks[0].attn2
|
| 1892 |
+
|
| 1893 |
+
out_channels = base_upblock.resnets[0].out_channels
|
| 1894 |
+
in_channels = base_upblock.resnets[-1].in_channels - out_channels
|
| 1895 |
+
prev_output_channels = base_upblock.resnets[0].in_channels - out_channels
|
| 1896 |
+
ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections]
|
| 1897 |
+
temb_channels = base_upblock.resnets[0].time_emb_proj.in_features
|
| 1898 |
+
num_groups = base_upblock.resnets[0].norm1.num_groups
|
| 1899 |
+
resolution_idx = base_upblock.resolution_idx
|
| 1900 |
+
if hasattr(base_upblock, "attentions"):
|
| 1901 |
+
has_crossattn = True
|
| 1902 |
+
transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks)
|
| 1903 |
+
num_attention_heads = get_first_cross_attention(base_upblock).heads
|
| 1904 |
+
cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim
|
| 1905 |
+
upcast_attention = get_first_cross_attention(base_upblock).upcast_attention
|
| 1906 |
+
else:
|
| 1907 |
+
has_crossattn = False
|
| 1908 |
+
transformer_layers_per_block = None
|
| 1909 |
+
num_attention_heads = None
|
| 1910 |
+
cross_attention_dim = None
|
| 1911 |
+
upcast_attention = None
|
| 1912 |
+
add_upsample = base_upblock.upsamplers is not None
|
| 1913 |
+
|
| 1914 |
+
# create model
|
| 1915 |
+
model = cls(
|
| 1916 |
+
in_channels=in_channels,
|
| 1917 |
+
out_channels=out_channels,
|
| 1918 |
+
prev_output_channel=prev_output_channels,
|
| 1919 |
+
ctrl_skip_channels=ctrl_skip_channelss,
|
| 1920 |
+
temb_channels=temb_channels,
|
| 1921 |
+
norm_num_groups=num_groups,
|
| 1922 |
+
resolution_idx=resolution_idx,
|
| 1923 |
+
has_crossattn=has_crossattn,
|
| 1924 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1925 |
+
num_attention_heads=num_attention_heads,
|
| 1926 |
+
cross_attention_dim=cross_attention_dim,
|
| 1927 |
+
add_upsample=add_upsample,
|
| 1928 |
+
upcast_attention=upcast_attention,
|
| 1929 |
+
)
|
| 1930 |
+
|
| 1931 |
+
# load weights
|
| 1932 |
+
model.resnets.load_state_dict(base_upblock.resnets.state_dict())
|
| 1933 |
+
if has_crossattn:
|
| 1934 |
+
model.attentions.load_state_dict(base_upblock.attentions.state_dict())
|
| 1935 |
+
if add_upsample:
|
| 1936 |
+
model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict())
|
| 1937 |
+
model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict())
|
| 1938 |
+
|
| 1939 |
+
return model
|
| 1940 |
+
|
| 1941 |
+
def freeze_base_params(self) -> None:
|
| 1942 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1943 |
+
tuning."""
|
| 1944 |
+
# Unfreeze everything
|
| 1945 |
+
for param in self.parameters():
|
| 1946 |
+
param.requires_grad = True
|
| 1947 |
+
|
| 1948 |
+
# Freeze base part
|
| 1949 |
+
base_parts = [self.resnets]
|
| 1950 |
+
if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones
|
| 1951 |
+
base_parts.append(self.attentions)
|
| 1952 |
+
if self.upsamplers is not None:
|
| 1953 |
+
base_parts.append(self.upsamplers)
|
| 1954 |
+
for part in base_parts:
|
| 1955 |
+
for param in part.parameters():
|
| 1956 |
+
param.requires_grad = False
|
| 1957 |
+
|
| 1958 |
+
def forward(
|
| 1959 |
+
self,
|
| 1960 |
+
hidden_states: Tensor,
|
| 1961 |
+
res_hidden_states_tuple_base: Tuple[Tensor, ...],
|
| 1962 |
+
res_hidden_states_tuple_ctrl: Tuple[Tensor, ...],
|
| 1963 |
+
temb: Tensor,
|
| 1964 |
+
encoder_hidden_states: Optional[Tensor] = None,
|
| 1965 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1966 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1967 |
+
attention_mask: Optional[Tensor] = None,
|
| 1968 |
+
upsample_size: Optional[int] = None,
|
| 1969 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1970 |
+
apply_control: bool = True,
|
| 1971 |
+
) -> Tensor:
|
| 1972 |
+
if cross_attention_kwargs is not None:
|
| 1973 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1974 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1975 |
+
|
| 1976 |
+
is_freeu_enabled = (
|
| 1977 |
+
getattr(self, "s1", None)
|
| 1978 |
+
and getattr(self, "s2", None)
|
| 1979 |
+
and getattr(self, "b1", None)
|
| 1980 |
+
and getattr(self, "b2", None)
|
| 1981 |
+
)
|
| 1982 |
+
|
| 1983 |
+
def create_custom_forward(module, return_dict=None):
|
| 1984 |
+
def custom_forward(*inputs):
|
| 1985 |
+
if return_dict is not None:
|
| 1986 |
+
return module(*inputs, return_dict=return_dict)
|
| 1987 |
+
else:
|
| 1988 |
+
return module(*inputs)
|
| 1989 |
+
|
| 1990 |
+
return custom_forward
|
| 1991 |
+
|
| 1992 |
+
def maybe_apply_freeu_to_subblock(hidden_states, res_h_base):
|
| 1993 |
+
# FreeU: Only operate on the first two stages
|
| 1994 |
+
if is_freeu_enabled:
|
| 1995 |
+
return apply_freeu(
|
| 1996 |
+
self.resolution_idx,
|
| 1997 |
+
hidden_states,
|
| 1998 |
+
res_h_base,
|
| 1999 |
+
s1=self.s1,
|
| 2000 |
+
s2=self.s2,
|
| 2001 |
+
b1=self.b1,
|
| 2002 |
+
b2=self.b2,
|
| 2003 |
+
)
|
| 2004 |
+
else:
|
| 2005 |
+
return hidden_states, res_h_base
|
| 2006 |
+
|
| 2007 |
+
for resnet, attn, c2b, res_h_base, res_h_ctrl in zip(
|
| 2008 |
+
self.resnets,
|
| 2009 |
+
self.attentions,
|
| 2010 |
+
self.ctrl_to_base,
|
| 2011 |
+
reversed(res_hidden_states_tuple_base),
|
| 2012 |
+
reversed(res_hidden_states_tuple_ctrl),
|
| 2013 |
+
):
|
| 2014 |
+
if apply_control:
|
| 2015 |
+
# print('up:', hidden_states.shape, res_h_ctrl.shape)
|
| 2016 |
+
hidden_states += c2b(res_h_ctrl) * conditioning_scale
|
| 2017 |
+
|
| 2018 |
+
hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base)
|
| 2019 |
+
hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
|
| 2020 |
+
|
| 2021 |
+
if self.training and self.gradient_checkpointing:
|
| 2022 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 2023 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 2024 |
+
create_custom_forward(resnet),
|
| 2025 |
+
hidden_states,
|
| 2026 |
+
temb,
|
| 2027 |
+
**ckpt_kwargs,
|
| 2028 |
+
)
|
| 2029 |
+
else:
|
| 2030 |
+
hidden_states = resnet(hidden_states, temb)
|
| 2031 |
+
|
| 2032 |
+
if attn is not None:
|
| 2033 |
+
hidden_states = attn(
|
| 2034 |
+
hidden_states,
|
| 2035 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 2036 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 2037 |
+
attention_mask=attention_mask,
|
| 2038 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 2039 |
+
return_dict=False,
|
| 2040 |
+
)[0]
|
| 2041 |
+
|
| 2042 |
+
if self.upsamplers is not None:
|
| 2043 |
+
hidden_states = self.upsamplers(hidden_states, upsample_size)
|
| 2044 |
+
|
| 2045 |
+
return hidden_states
|
| 2046 |
+
|
| 2047 |
+
|
| 2048 |
+
def make_zero_conv(in_channels, out_channels=None):
|
| 2049 |
+
return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
|
| 2050 |
+
|
| 2051 |
+
|
| 2052 |
+
def zero_module(module):
|
| 2053 |
+
for p in module.parameters():
|
| 2054 |
+
nn.init.zeros_(p)
|
| 2055 |
+
return module
|
| 2056 |
+
|
| 2057 |
+
|
| 2058 |
+
def find_largest_factor(number, max_factor):
|
| 2059 |
+
factor = max_factor
|
| 2060 |
+
if factor >= number:
|
| 2061 |
+
return number
|
| 2062 |
+
while factor != 0:
|
| 2063 |
+
residual = number % factor
|
| 2064 |
+
if residual == 0:
|
| 2065 |
+
return factor
|
| 2066 |
+
factor -= 1
|
utils/modules.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from diffusers.models.unets.unet_2d_blocks import *
|
| 3 |
+
|
| 4 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
| 5 |
+
def __init__(
|
| 6 |
+
self,
|
| 7 |
+
in_channels: int,
|
| 8 |
+
temb_channels: int,
|
| 9 |
+
out_channels: Optional[int] = None,
|
| 10 |
+
dropout: float = 0.0,
|
| 11 |
+
num_layers: int = 1,
|
| 12 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 13 |
+
resnet_eps: float = 1e-6,
|
| 14 |
+
resnet_time_scale_shift: str = "default",
|
| 15 |
+
resnet_act_fn: str = "swish",
|
| 16 |
+
resnet_groups: int = 32,
|
| 17 |
+
resnet_groups_out: Optional[int] = None,
|
| 18 |
+
resnet_pre_norm: bool = True,
|
| 19 |
+
num_attention_heads: int = 1,
|
| 20 |
+
output_scale_factor: float = 1.0,
|
| 21 |
+
cross_attention_dim: int = 1280,
|
| 22 |
+
dual_cross_attention: bool = False,
|
| 23 |
+
use_linear_projection: bool = False,
|
| 24 |
+
upcast_attention: bool = False,
|
| 25 |
+
attention_type: str = "default",
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
out_channels = out_channels or in_channels
|
| 30 |
+
self.in_channels = in_channels
|
| 31 |
+
self.out_channels = out_channels
|
| 32 |
+
|
| 33 |
+
self.has_cross_attention = True
|
| 34 |
+
self.num_attention_heads = num_attention_heads
|
| 35 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 36 |
+
|
| 37 |
+
# support for variable transformer layers per block
|
| 38 |
+
if isinstance(transformer_layers_per_block, int):
|
| 39 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 40 |
+
|
| 41 |
+
resnet_groups_out = resnet_groups_out or resnet_groups
|
| 42 |
+
|
| 43 |
+
# there is always at least one resnet
|
| 44 |
+
resnets = [
|
| 45 |
+
ResnetBlock2D(
|
| 46 |
+
in_channels=in_channels,
|
| 47 |
+
out_channels=out_channels,
|
| 48 |
+
temb_channels=temb_channels,
|
| 49 |
+
eps=resnet_eps,
|
| 50 |
+
groups=resnet_groups,
|
| 51 |
+
groups_out=resnet_groups_out,
|
| 52 |
+
dropout=dropout,
|
| 53 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 54 |
+
non_linearity=resnet_act_fn,
|
| 55 |
+
output_scale_factor=output_scale_factor,
|
| 56 |
+
pre_norm=resnet_pre_norm,
|
| 57 |
+
)
|
| 58 |
+
]
|
| 59 |
+
attentions = []
|
| 60 |
+
|
| 61 |
+
for i in range(num_layers):
|
| 62 |
+
if not dual_cross_attention:
|
| 63 |
+
attentions.append(
|
| 64 |
+
Transformer2DModel(
|
| 65 |
+
num_attention_heads,
|
| 66 |
+
out_channels // num_attention_heads,
|
| 67 |
+
in_channels=out_channels,
|
| 68 |
+
num_layers=transformer_layers_per_block[i],
|
| 69 |
+
cross_attention_dim=cross_attention_dim,
|
| 70 |
+
norm_num_groups=resnet_groups_out,
|
| 71 |
+
use_linear_projection=use_linear_projection,
|
| 72 |
+
upcast_attention=upcast_attention,
|
| 73 |
+
attention_type=attention_type,
|
| 74 |
+
)
|
| 75 |
+
)
|
| 76 |
+
else:
|
| 77 |
+
attentions.append(
|
| 78 |
+
DualTransformer2DModel(
|
| 79 |
+
num_attention_heads,
|
| 80 |
+
out_channels // num_attention_heads,
|
| 81 |
+
in_channels=out_channels,
|
| 82 |
+
num_layers=1,
|
| 83 |
+
cross_attention_dim=cross_attention_dim,
|
| 84 |
+
norm_num_groups=resnet_groups,
|
| 85 |
+
)
|
| 86 |
+
)
|
| 87 |
+
resnets.append(
|
| 88 |
+
ResnetBlock2D(
|
| 89 |
+
in_channels=out_channels,
|
| 90 |
+
out_channels=out_channels,
|
| 91 |
+
temb_channels=temb_channels,
|
| 92 |
+
eps=resnet_eps,
|
| 93 |
+
groups=resnet_groups_out,
|
| 94 |
+
dropout=dropout,
|
| 95 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 96 |
+
non_linearity=resnet_act_fn,
|
| 97 |
+
output_scale_factor=output_scale_factor,
|
| 98 |
+
pre_norm=resnet_pre_norm,
|
| 99 |
+
)
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.attentions = nn.ModuleList(attentions)
|
| 103 |
+
self.resnets = nn.ModuleList(resnets)
|
| 104 |
+
|
| 105 |
+
self.gradient_checkpointing = False
|
| 106 |
+
|
| 107 |
+
def forward(
|
| 108 |
+
self,
|
| 109 |
+
hidden_states: torch.Tensor,
|
| 110 |
+
temb: Optional[torch.Tensor] = None,
|
| 111 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 112 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 113 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 114 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 115 |
+
) -> torch.Tensor:
|
| 116 |
+
if cross_attention_kwargs is not None:
|
| 117 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 118 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 119 |
+
|
| 120 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 121 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 122 |
+
if self.training and self.gradient_checkpointing:
|
| 123 |
+
|
| 124 |
+
def create_custom_forward(module, return_dict=None):
|
| 125 |
+
def custom_forward(*inputs):
|
| 126 |
+
if return_dict is not None:
|
| 127 |
+
return module(*inputs, return_dict=return_dict)
|
| 128 |
+
else:
|
| 129 |
+
return module(*inputs)
|
| 130 |
+
|
| 131 |
+
return custom_forward
|
| 132 |
+
|
| 133 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 134 |
+
hidden_states = attn(
|
| 135 |
+
hidden_states,
|
| 136 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 137 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 138 |
+
attention_mask=attention_mask,
|
| 139 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 140 |
+
return_dict=False,
|
| 141 |
+
)[0]
|
| 142 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 143 |
+
create_custom_forward(resnet),
|
| 144 |
+
hidden_states,
|
| 145 |
+
temb,
|
| 146 |
+
**ckpt_kwargs,
|
| 147 |
+
)
|
| 148 |
+
else:
|
| 149 |
+
hidden_states = attn(
|
| 150 |
+
hidden_states,
|
| 151 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 152 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 153 |
+
attention_mask=attention_mask,
|
| 154 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 155 |
+
return_dict=False,
|
| 156 |
+
)[0]
|
| 157 |
+
hidden_states = resnet(hidden_states, temb)
|
| 158 |
+
|
| 159 |
+
return hidden_states
|
utils/resampler.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from einops.layers.torch import Rearrange
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# FFN
|
| 13 |
+
def FeedForward(dim, mult=4):
|
| 14 |
+
inner_dim = int(dim * mult)
|
| 15 |
+
return nn.Sequential(
|
| 16 |
+
nn.LayerNorm(dim),
|
| 17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def reshape_tensor(x, heads):
|
| 24 |
+
bs, length, width = x.shape
|
| 25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
| 26 |
+
x = x.view(bs, length, heads, -1)
|
| 27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 28 |
+
x = x.transpose(1, 2)
|
| 29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 30 |
+
x = x.reshape(bs, heads, length, -1)
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class PerceiverAttention(nn.Module):
|
| 35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.scale = dim_head**-0.5
|
| 38 |
+
self.dim_head = dim_head
|
| 39 |
+
self.heads = heads
|
| 40 |
+
inner_dim = dim_head * heads
|
| 41 |
+
|
| 42 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 43 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 44 |
+
|
| 45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 48 |
+
|
| 49 |
+
def forward(self, x, latents):
|
| 50 |
+
"""
|
| 51 |
+
Args:
|
| 52 |
+
x (torch.Tensor): image features
|
| 53 |
+
shape (b, n1, D)
|
| 54 |
+
latent (torch.Tensor): latent features
|
| 55 |
+
shape (b, n2, D)
|
| 56 |
+
"""
|
| 57 |
+
x = self.norm1(x)
|
| 58 |
+
latents = self.norm2(latents)
|
| 59 |
+
|
| 60 |
+
b, l, _ = latents.shape
|
| 61 |
+
|
| 62 |
+
q = self.to_q(latents)
|
| 63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
| 64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 65 |
+
|
| 66 |
+
q = reshape_tensor(q, self.heads)
|
| 67 |
+
k = reshape_tensor(k, self.heads)
|
| 68 |
+
v = reshape_tensor(v, self.heads)
|
| 69 |
+
|
| 70 |
+
# attention
|
| 71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 74 |
+
out = weight @ v
|
| 75 |
+
|
| 76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 77 |
+
|
| 78 |
+
return self.to_out(out)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class Resampler(nn.Module):
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
dim=1280,
|
| 85 |
+
depth=4,
|
| 86 |
+
dim_head=64,
|
| 87 |
+
heads=20,
|
| 88 |
+
num_queries=16,
|
| 89 |
+
embedding_dim=512,
|
| 90 |
+
output_dim=2048,
|
| 91 |
+
ff_mult=4,
|
| 92 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
| 93 |
+
apply_pos_emb: bool = False,
|
| 94 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
| 95 |
+
):
|
| 96 |
+
super().__init__()
|
| 97 |
+
# self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
| 98 |
+
|
| 99 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 100 |
+
|
| 101 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 102 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 103 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 104 |
+
|
| 105 |
+
# self.to_latents_from_mean_pooled_seq = (
|
| 106 |
+
# nn.Sequential(
|
| 107 |
+
# nn.LayerNorm(dim),
|
| 108 |
+
# nn.Linear(dim, dim * num_latents_mean_pooled),
|
| 109 |
+
# Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
| 110 |
+
# )
|
| 111 |
+
# if num_latents_mean_pooled > 0
|
| 112 |
+
# else None
|
| 113 |
+
# )
|
| 114 |
+
|
| 115 |
+
self.layers = nn.ModuleList([])
|
| 116 |
+
for _ in range(depth):
|
| 117 |
+
self.layers.append(
|
| 118 |
+
nn.ModuleList(
|
| 119 |
+
[
|
| 120 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 121 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 122 |
+
]
|
| 123 |
+
)
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
# if self.pos_emb is not None:
|
| 128 |
+
# n, device = x.shape[1], x.device
|
| 129 |
+
# pos_emb = self.pos_emb(torch.arange(n, device=device))
|
| 130 |
+
# x = x + pos_emb
|
| 131 |
+
|
| 132 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 133 |
+
|
| 134 |
+
# print(self.latents.size(), x.size(), latents.size())
|
| 135 |
+
|
| 136 |
+
x = self.proj_in(x)
|
| 137 |
+
|
| 138 |
+
# if self.to_latents_from_mean_pooled_seq:
|
| 139 |
+
# meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
| 140 |
+
# meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
| 141 |
+
# latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
| 142 |
+
|
| 143 |
+
for attn, ff in self.layers:
|
| 144 |
+
latents = attn(x, latents) + latents
|
| 145 |
+
latents = ff(latents) + latents
|
| 146 |
+
|
| 147 |
+
latents = self.proj_out(latents)
|
| 148 |
+
return self.norm_out(latents)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def masked_mean(t, *, dim, mask=None):
|
| 152 |
+
if mask is None:
|
| 153 |
+
return t.mean(dim=dim)
|
| 154 |
+
|
| 155 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
| 156 |
+
mask = rearrange(mask, "b n -> b n 1")
|
| 157 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
| 158 |
+
|
| 159 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
utils/resize.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import PIL
|
| 3 |
+
import cv2, math,os
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# 最短边为1024,并进行中心裁剪
|
| 7 |
+
def resize_image_pil(input_image, min_side=1024):
|
| 8 |
+
|
| 9 |
+
# 获取图像的宽度和高度
|
| 10 |
+
width, height = input_image.size
|
| 11 |
+
|
| 12 |
+
# 计算缩放比例
|
| 13 |
+
scale = min_side / min(height, width)
|
| 14 |
+
|
| 15 |
+
# 计算新的尺寸
|
| 16 |
+
new_width = int(width * scale)
|
| 17 |
+
new_height = int(height * scale)
|
| 18 |
+
|
| 19 |
+
# 调整图像大小
|
| 20 |
+
resized_image = input_image.resize((new_width, new_height), Image.ANTIALIAS)
|
| 21 |
+
|
| 22 |
+
# 计算中心裁剪的位置
|
| 23 |
+
crop_top = (new_height - min_side) // 2
|
| 24 |
+
crop_left = (new_width - min_side) // 2
|
| 25 |
+
|
| 26 |
+
# 进行中心裁剪
|
| 27 |
+
cropped_image = resized_image.crop((crop_left, crop_top, crop_left + min_side, crop_top + min_side))
|
| 28 |
+
|
| 29 |
+
return cropped_image
|
| 30 |
+
|
| 31 |
+
def resize_image_cv2(input_image, min_side=1024, ):
|
| 32 |
+
# cv2读取的image
|
| 33 |
+
(height, width, _ )= input_image.shape
|
| 34 |
+
# print(height, width)
|
| 35 |
+
scale = min_side / min(height, width)
|
| 36 |
+
|
| 37 |
+
# 计算新的尺寸
|
| 38 |
+
new_width = int(width * scale)
|
| 39 |
+
new_height = int(height * scale)
|
| 40 |
+
input_image =cv2.resize(input_image, (new_width, new_height))
|
| 41 |
+
|
| 42 |
+
# 计算中心裁剪的位置
|
| 43 |
+
crop_top = (new_height - min_side) // 2
|
| 44 |
+
crop_left = (new_width - min_side) // 2
|
| 45 |
+
|
| 46 |
+
# 进行中心裁剪
|
| 47 |
+
image = input_image[crop_top:crop_top + min_side, crop_left:crop_left + min_side]
|
| 48 |
+
|
| 49 |
+
return image
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def resize_img0(input_image, max_side=1280, min_side=1024,
|
| 53 |
+
mode=Image.BILINEAR, base_pixel_number=64):
|
| 54 |
+
|
| 55 |
+
w, h = input_image.size
|
| 56 |
+
|
| 57 |
+
ratio = min_side / min(h, w)
|
| 58 |
+
w, h = round(ratio*w), round(ratio*h)
|
| 59 |
+
ratio = max_side / max(h, w)
|
| 60 |
+
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
| 61 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
| 62 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
| 63 |
+
|
| 64 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
return input_image
|
| 68 |
+
|
| 69 |
+
def resize_img1(input_image, max_side=1280, min_side=1024,
|
| 70 |
+
mode=Image.BILINEAR, base_pixel_number=64):
|
| 71 |
+
|
| 72 |
+
w, h = input_image.size
|
| 73 |
+
|
| 74 |
+
ratio = min_side / w
|
| 75 |
+
w, h = round(ratio*w), round(ratio*h)
|
| 76 |
+
input_image = input_image.resize([w, h], mode)
|
| 77 |
+
|
| 78 |
+
w_resize_new = (w // base_pixel_number) * base_pixel_number
|
| 79 |
+
h_resize_new = (h // base_pixel_number) * base_pixel_number
|
| 80 |
+
|
| 81 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
return input_image
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def resize_img(input_image, max_side=1024, min_side=1024, size=None,
|
| 88 |
+
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
| 89 |
+
w, h = input_image.size
|
| 90 |
+
if size is not None:
|
| 91 |
+
w_resize_new, h_resize_new = size
|
| 92 |
+
else:
|
| 93 |
+
ratio = min_side / min(h, w)
|
| 94 |
+
w, h = round(ratio * w), round(ratio * h)
|
| 95 |
+
ratio = max_side / max(h, w)
|
| 96 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
| 97 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
| 98 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
| 99 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
| 100 |
+
|
| 101 |
+
if pad_to_max_side:
|
| 102 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
| 103 |
+
offset_x = (max_side - w_resize_new) // 2
|
| 104 |
+
offset_y = (max_side - h_resize_new) // 2
|
| 105 |
+
res[offset_y:offset_y + h_resize_new, offset_x:offset_x + w_resize_new] = np.array(input_image)[:, :, :3]
|
| 106 |
+
input_image = Image.fromarray(res)
|
| 107 |
+
return input_image
|
utils/tools.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, json
|
| 2 |
+
import cv2
|
| 3 |
+
import glob
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
def im_resize(original_image, short_len=1024):
|
| 9 |
+
h, w = original_image.shape[:-1]
|
| 10 |
+
if min(h, w) != short_len:
|
| 11 |
+
if h > w:
|
| 12 |
+
out_size = (short_len, int(h/w*short_len))
|
| 13 |
+
else:
|
| 14 |
+
out_size = (int(w/h*short_len), short_len)
|
| 15 |
+
else:
|
| 16 |
+
out_size = w, h
|
| 17 |
+
|
| 18 |
+
return cv2.resize(original_image, out_size)
|
| 19 |
+
|
| 20 |
+
def pixelize(image, block_size=64):
|
| 21 |
+
# 获取图像的宽度和高度
|
| 22 |
+
height, width, _ = image.shape
|
| 23 |
+
|
| 24 |
+
# 计算新图像的宽度和高度,使得每个块为 block_size x block_size 的大小
|
| 25 |
+
new_width = (width // block_size) * block_size
|
| 26 |
+
new_height = (height // block_size) * block_size
|
| 27 |
+
|
| 28 |
+
# 缩放图像以匹配新的宽度和高度
|
| 29 |
+
resized_image = cv2.resize(image, (new_width, new_height))
|
| 30 |
+
|
| 31 |
+
# 将图像分割成块并用块的平均值替代
|
| 32 |
+
for i in range(0, new_height, block_size):
|
| 33 |
+
for j in range(0, new_width, block_size):
|
| 34 |
+
block = resized_image[i:i+block_size, j:j+block_size, :]
|
| 35 |
+
average_color = np.mean(block, axis=(0, 1), dtype=int)
|
| 36 |
+
resized_image[i:i+block_size, j:j+block_size, :] = average_color
|
| 37 |
+
|
| 38 |
+
# 将图像缩小回原始大小,以增加像素风格的效果
|
| 39 |
+
final_image = cv2.resize(resized_image, (width, height))
|
| 40 |
+
|
| 41 |
+
return final_image
|
| 42 |
+
|
| 43 |
+
def get_kps_bbox_faceid(w, h, json_path):
|
| 44 |
+
def get_new_kps_and_bbox(w, h, kps, bbox):
|
| 45 |
+
scale = 512/max(w, h)
|
| 46 |
+
pad = abs(w - h) * scale / 2
|
| 47 |
+
if w < h:
|
| 48 |
+
kps[:, 0] -= pad
|
| 49 |
+
bbox[0] -= pad
|
| 50 |
+
bbox[2] -= pad
|
| 51 |
+
elif h < w:
|
| 52 |
+
kps[:, 1] -= pad
|
| 53 |
+
bbox[1] -= pad
|
| 54 |
+
bbox[3] -= pad
|
| 55 |
+
kps /= scale
|
| 56 |
+
bbox /= scale
|
| 57 |
+
return kps, bbox
|
| 58 |
+
|
| 59 |
+
with open(json_path, 'r') as file:
|
| 60 |
+
data = json.load(file)
|
| 61 |
+
kps = np.array(data.get("kps"))
|
| 62 |
+
bbox = np.array(data.get("bbox"))
|
| 63 |
+
kps, bbox = get_new_kps_and_bbox(w, h, kps, bbox)
|
| 64 |
+
embedding = data.get("embedding")
|
| 65 |
+
face_id_embed = embedding / np.linalg.norm(embedding)
|
| 66 |
+
face_id_embed = torch.from_numpy(face_id_embed)
|
| 67 |
+
return kps, bbox, face_id_embed
|
| 68 |
+
|
| 69 |
+
def get_kps_and_face_id_embed(w, h, json_path):
|
| 70 |
+
def get_new_kps(w, h, kps):
|
| 71 |
+
scale = 512/max(w, h)
|
| 72 |
+
pad = abs(w - h) * scale / 2
|
| 73 |
+
if w < h:
|
| 74 |
+
kps[:, 0] -= pad
|
| 75 |
+
elif h < w:
|
| 76 |
+
kps[:, 1] -= pad
|
| 77 |
+
kps = kps / scale
|
| 78 |
+
return kps
|
| 79 |
+
|
| 80 |
+
with open(json_path, 'r') as file:
|
| 81 |
+
data = json.load(file)
|
| 82 |
+
kps = np.array(data.get("kps"))
|
| 83 |
+
kps = get_new_kps(w, h, kps)
|
| 84 |
+
embedding = data.get("embedding")
|
| 85 |
+
face_id_embed = embedding / np.linalg.norm(embedding)
|
| 86 |
+
face_id_embed = torch.from_numpy(face_id_embed)
|
| 87 |
+
return kps, face_id_embed
|
| 88 |
+
|
| 89 |
+
def get_face_id_embed(json_path):
|
| 90 |
+
|
| 91 |
+
with open(json_path, 'r') as file:
|
| 92 |
+
data = json.load(file)
|
| 93 |
+
embedding = data.get("embedding")
|
| 94 |
+
face_id_embed = embedding / np.linalg.norm(embedding)
|
| 95 |
+
face_id_embed = torch.from_numpy(face_id_embed)
|
| 96 |
+
return face_id_embed
|
| 97 |
+
|
| 98 |
+
def get_module_kohya_state_dict(module, prefix: str, dtype: torch.dtype, adapter_name: str = "default"):
|
| 99 |
+
kohya_ss_state_dict = {}
|
| 100 |
+
for peft_key, weight in module.items():
|
| 101 |
+
kohya_key = peft_key.replace("unet.base_model.model", prefix)
|
| 102 |
+
kohya_key = kohya_key.replace("lora_A", "lora_down")
|
| 103 |
+
kohya_key = kohya_key.replace("lora_B", "lora_up")
|
| 104 |
+
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
|
| 105 |
+
kohya_ss_state_dict[kohya_key] = weight.to(dtype)
|
| 106 |
+
# Set alpha parameter
|
| 107 |
+
if "lora_down" in kohya_key:
|
| 108 |
+
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
|
| 109 |
+
kohya_ss_state_dict[alpha_key] = torch.tensor(8).to(dtype)
|
| 110 |
+
|
| 111 |
+
return kohya_ss_state_dict
|
| 112 |
+
|
| 113 |
+
def get_module_kohya_state_dict_xs(module, dtype):
|
| 114 |
+
kohya_ss_state_dict = {}
|
| 115 |
+
for peft_key, weight in module.items():
|
| 116 |
+
if "mid_block" in peft_key:
|
| 117 |
+
peft_key = peft_key.replace('attentions', 'base_midblock.attentions')
|
| 118 |
+
elif "down_block" in peft_key:
|
| 119 |
+
peft_key = peft_key.replace('attentions', 'base_attentions')
|
| 120 |
+
if dtype == None:
|
| 121 |
+
kohya_ss_state_dict[peft_key] = weight
|
| 122 |
+
else:
|
| 123 |
+
kohya_ss_state_dict[peft_key] = weight.to(dtype)
|
| 124 |
+
return kohya_ss_state_dict
|
utils/utils.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
attn_maps = {}
|
| 7 |
+
def hook_fn(name):
|
| 8 |
+
def forward_hook(module, input, output):
|
| 9 |
+
if hasattr(module.processor, "attn_map"):
|
| 10 |
+
attn_maps[name] = module.processor.attn_map
|
| 11 |
+
del module.processor.attn_map
|
| 12 |
+
|
| 13 |
+
return forward_hook
|
| 14 |
+
|
| 15 |
+
def register_cross_attention_hook(unet):
|
| 16 |
+
for name, module in unet.named_modules():
|
| 17 |
+
if name.split('.')[-1].startswith('attn2'):
|
| 18 |
+
module.register_forward_hook(hook_fn(name))
|
| 19 |
+
|
| 20 |
+
return unet
|
| 21 |
+
|
| 22 |
+
def upscale(attn_map, target_size):
|
| 23 |
+
attn_map = torch.mean(attn_map, dim=0)
|
| 24 |
+
attn_map = attn_map.permute(1,0)
|
| 25 |
+
temp_size = None
|
| 26 |
+
|
| 27 |
+
for i in range(0,5):
|
| 28 |
+
scale = 2 ** i
|
| 29 |
+
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
| 30 |
+
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
| 31 |
+
break
|
| 32 |
+
|
| 33 |
+
assert temp_size is not None, "temp_size cannot is None"
|
| 34 |
+
|
| 35 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
| 36 |
+
|
| 37 |
+
attn_map = F.interpolate(
|
| 38 |
+
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
| 39 |
+
size=target_size,
|
| 40 |
+
mode='bilinear',
|
| 41 |
+
align_corners=False
|
| 42 |
+
)[0]
|
| 43 |
+
|
| 44 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
| 45 |
+
return attn_map
|
| 46 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
| 47 |
+
|
| 48 |
+
idx = 0 if instance_or_negative else 1
|
| 49 |
+
net_attn_maps = []
|
| 50 |
+
|
| 51 |
+
for name, attn_map in attn_maps.items():
|
| 52 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
| 53 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
| 54 |
+
attn_map = upscale(attn_map, image_size)
|
| 55 |
+
net_attn_maps.append(attn_map)
|
| 56 |
+
|
| 57 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
| 58 |
+
|
| 59 |
+
return net_attn_maps
|
| 60 |
+
|
| 61 |
+
def attnmaps2images(net_attn_maps):
|
| 62 |
+
|
| 63 |
+
#total_attn_scores = 0
|
| 64 |
+
images = []
|
| 65 |
+
|
| 66 |
+
for attn_map in net_attn_maps:
|
| 67 |
+
attn_map = attn_map.cpu().numpy()
|
| 68 |
+
#total_attn_scores += attn_map.mean().item()
|
| 69 |
+
|
| 70 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
| 71 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
| 72 |
+
#print("norm: ", normalized_attn_map.shape)
|
| 73 |
+
image = Image.fromarray(normalized_attn_map)
|
| 74 |
+
|
| 75 |
+
#image = fix_save_attn_map(attn_map)
|
| 76 |
+
images.append(image)
|
| 77 |
+
|
| 78 |
+
#print(total_attn_scores)
|
| 79 |
+
return images
|
| 80 |
+
|
| 81 |
+
def is_torch2_available():
|
| 82 |
+
return hasattr(F, "scaled_dot_product_attention")
|
| 83 |
+
|
| 84 |
+
def get_generator(seed, device):
|
| 85 |
+
|
| 86 |
+
if seed is not None:
|
| 87 |
+
if isinstance(seed, list):
|
| 88 |
+
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
|
| 89 |
+
else:
|
| 90 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 91 |
+
else:
|
| 92 |
+
generator = None
|
| 93 |
+
|
| 94 |
+
return generator
|