Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,216 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
-
|
| 18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
-
|
| 21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 22 |
-
|
| 23 |
-
if randomize_seed:
|
| 24 |
-
seed = random.randint(0, MAX_SEED)
|
| 25 |
-
|
| 26 |
-
generator = torch.Generator().manual_seed(seed)
|
| 27 |
-
|
| 28 |
-
image = pipe(
|
| 29 |
-
prompt = prompt,
|
| 30 |
-
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
-
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
-
height = height,
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
-
|
| 38 |
-
return image
|
| 39 |
-
|
| 40 |
-
examples = [
|
| 41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 42 |
-
"An astronaut riding a green horse",
|
| 43 |
-
"A delicious ceviche cheesecake slice",
|
| 44 |
-
]
|
| 45 |
-
|
| 46 |
-
css="""
|
| 47 |
-
#col-container {
|
| 48 |
-
margin: 0 auto;
|
| 49 |
-
max-width: 520px;
|
| 50 |
}
|
| 51 |
-
"""
|
| 52 |
|
| 53 |
if torch.cuda.is_available():
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
with gr.Row():
|
| 118 |
-
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
num_inference_steps = gr.Slider(
|
| 128 |
-
label="Number of inference steps",
|
| 129 |
-
minimum=1,
|
| 130 |
-
maximum=12,
|
| 131 |
-
step=1,
|
| 132 |
-
value=2,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
gr.Examples(
|
| 136 |
-
examples = examples,
|
| 137 |
-
inputs = [prompt]
|
| 138 |
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
-
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
|
| 4 |
+
from tdd_scheduler import TDDScheduler
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
+
import spaces
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
+
SAFETY_CHECKER = False
|
| 10 |
|
| 11 |
+
loaded_acc = None
|
| 12 |
+
device = "cuda"
|
| 13 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
|
| 15 |
+
ACC_lora={
|
| 16 |
+
"TDD":"RED-AIGC/TDD/sdxl_tdd_wo_adv_lora.safetensors",
|
| 17 |
+
"TDD_adv":"RED-AIGC/TDD/sdxl_tdd_lora_weights.safetensors",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
}
|
|
|
|
| 19 |
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
+
base1 = UNet2DConditionModel.from_pretrained(
|
| 22 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
|
| 23 |
+
).to(device)
|
| 24 |
+
base2 = UNet2DConditionModel.from_pretrained(
|
| 25 |
+
"frankjoshua/realvisxlV40_v40Bakedvae", subfolder="unet", torch_dtype=torch.float16
|
| 26 |
+
).to(device)
|
| 27 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
| 28 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 29 |
+
unet=base1,
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
variant="fp16",
|
| 32 |
+
).to(device)
|
| 33 |
|
| 34 |
+
tdd_lora = load_file(ACC_lora["TDD"])
|
| 35 |
+
tdd_adv_lora = ACC_lora["TDD_adv"]
|
| 36 |
+
pipe_sdxl.load_lora_weights(tdd_lora, adapter_name="TDD")
|
| 37 |
+
pipe_sdxl.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
|
| 38 |
+
pipe_sdxl.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)
|
| 39 |
+
|
| 40 |
+
pipe_sdxl_real = StableDiffusionXLPipeline.from_pretrained(
|
| 41 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 42 |
+
unet=base2,
|
| 43 |
+
torch_dtype=torch.float16,
|
| 44 |
+
variant="fp16",
|
| 45 |
+
).to(device)
|
| 46 |
+
pipe_sdxl_real.load_lora_weights(tdd_lora, adapter_name="TDD")
|
| 47 |
+
pipe_sdxl_real.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
|
| 48 |
+
pipe_sdxl_real.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)
|
| 49 |
+
|
| 50 |
+
def update_base_model(ckpt):
|
| 51 |
+
if torch.cuda.is_available():
|
| 52 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
| 53 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 54 |
+
torch_dtype=torch.float16,
|
| 55 |
+
variant="fp16",
|
| 56 |
+
).to(device)
|
| 57 |
+
return pipe_sdxl
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if SAFETY_CHECKER:
|
| 61 |
+
from safety_checker import StableDiffusionSafetyChecker
|
| 62 |
+
from transformers import CLIPFeatureExtractor
|
| 63 |
+
|
| 64 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 65 |
+
"CompVis/stable-diffusion-safety-checker"
|
| 66 |
+
).to(device)
|
| 67 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 68 |
+
"openai/clip-vit-base-patch32"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def check_nsfw_images(
|
| 72 |
+
images: list[Image.Image],
|
| 73 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
| 74 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
|
| 75 |
+
has_nsfw_concepts = safety_checker(
|
| 76 |
+
images=[images], clip_input=safety_checker_input.pixel_values.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
+
return images, has_nsfw_concepts
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@spaces.GPU(enable_queue=True)
|
| 83 |
+
def generate_image(
|
| 84 |
+
prompt,
|
| 85 |
+
negative_prompt,
|
| 86 |
+
ckpt,
|
| 87 |
+
acc,
|
| 88 |
+
num_inference_steps,
|
| 89 |
+
guidance_scale,
|
| 90 |
+
eta,
|
| 91 |
+
seed,
|
| 92 |
+
progress=gr.Progress(track_tqdm=True),
|
| 93 |
+
):
|
| 94 |
+
global loaded_acc
|
| 95 |
+
#pipe = pipe_sdxl #if mode == "sdxl" else pipe_sd15
|
| 96 |
+
|
| 97 |
+
if ckpt == "Real":
|
| 98 |
+
pipe = pipe_sdxl_real
|
| 99 |
+
else:
|
| 100 |
+
pipe = pipe_sdxl
|
| 101 |
+
|
| 102 |
+
if loaded_acc != acc:
|
| 103 |
+
#pipe.load_lora_weights(ACC_lora[acc], adapter_name=acc)
|
| 104 |
+
pipe.set_adapters([acc], adapter_weights=[1.0])
|
| 105 |
+
print(pipe.get_active_adapters())
|
| 106 |
+
loaded_acc = acc
|
| 107 |
+
|
| 108 |
+
results = pipe(
|
| 109 |
+
prompt=prompt,
|
| 110 |
+
negative_prompt=negative_prompt,
|
| 111 |
+
num_inference_steps=num_inference_steps,
|
| 112 |
+
guidance_scale=guidance_scale,
|
| 113 |
+
eta=eta,
|
| 114 |
+
generator=torch.Generator(device=pipe.device).manual_seed(seed),
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if SAFETY_CHECKER:
|
| 118 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 119 |
+
if any(has_nsfw_concepts):
|
| 120 |
+
gr.Warning("NSFW content detected.")
|
| 121 |
+
return Image.new("RGB", (512, 512))
|
| 122 |
+
return images[0]
|
| 123 |
+
return results.images[0]
|
| 124 |
+
|
| 125 |
+
css = """
|
| 126 |
+
h1 {
|
| 127 |
+
text-align: center;
|
| 128 |
+
display:block;
|
| 129 |
+
}
|
| 130 |
+
.gradio-container {
|
| 131 |
+
max-width: 70.5rem !important;
|
| 132 |
+
}
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
with gr.Blocks(css=css) as demo:
|
| 136 |
+
gr.Markdown(
|
| 137 |
+
"""
|
| 138 |
+
# ✨Target-Driven Distillation✨
|
| 139 |
+
|
| 140 |
+
Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.
|
| 141 |
+
|
| 142 |
+
[](https://arxiv.org) [](https://huggingface.co/RedAIGC/TDD)
|
| 143 |
+
"""
|
| 144 |
+
)
|
| 145 |
+
with gr.Row():
|
| 146 |
+
with gr.Column(scale=1):
|
| 147 |
+
with gr.Group():
|
| 148 |
+
with gr.Row():
|
| 149 |
+
prompt = gr.Textbox(label="Prompt")
|
| 150 |
+
with gr.Row():
|
| 151 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
| 152 |
+
with gr.Row():
|
| 153 |
+
steps = gr.Slider(
|
| 154 |
+
label="Sampling Steps",
|
| 155 |
+
minimum=4,
|
| 156 |
+
maximum=8,
|
| 157 |
+
step=1,
|
| 158 |
+
value=4,
|
| 159 |
+
)
|
| 160 |
+
with gr.Row():
|
| 161 |
+
guidance_scale = gr.Slider(
|
| 162 |
+
label="CFG Scale",
|
| 163 |
+
minimum=1,
|
| 164 |
+
maximum=4,
|
| 165 |
+
step=0.1,
|
| 166 |
+
value=2.0,
|
| 167 |
+
)
|
| 168 |
+
with gr.Row():
|
| 169 |
+
eta = gr.Slider(
|
| 170 |
+
label="eta",
|
| 171 |
+
minimum=0,
|
| 172 |
+
maximum=0.3,
|
| 173 |
+
step=0.1,
|
| 174 |
+
value=0.2,
|
| 175 |
+
)
|
| 176 |
+
with gr.Row():
|
| 177 |
+
seed = gr.Number(label="Seed", value=-1)
|
| 178 |
+
|
| 179 |
+
with gr.Row():
|
| 180 |
+
|
| 181 |
+
ckpt = gr.Dropdown(
|
| 182 |
+
label="Base Model",
|
| 183 |
+
choices=["SDXL-1.0", "Real"],
|
| 184 |
+
value="SDXL-1.0",
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
acc = gr.Dropdown(
|
| 188 |
+
label="Accelerate Lora",
|
| 189 |
+
choices=["TDD", "TDD_adv"],
|
| 190 |
+
value="TDD_adv",
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
with gr.Column(scale=1):
|
| 194 |
+
with gr.Group():
|
| 195 |
+
img = gr.Image(label="TDD Image", value="/share/wangcunzheng/test1.png")
|
| 196 |
+
submit_sdxl = gr.Button("Run on SDXL")
|
| 197 |
+
gr.Examples(
|
| 198 |
+
examples=[
|
| 199 |
+
["A photo of a cat made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],
|
| 200 |
+
["A photo of a dog made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],
|
| 201 |
+
|
| 202 |
+
],
|
| 203 |
+
inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
|
| 204 |
+
outputs=[img],
|
| 205 |
+
fn=generate_image,
|
| 206 |
+
cache_examples="lazy",
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
gr.on(
|
| 210 |
+
fn=generate_image,
|
| 211 |
+
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
|
| 212 |
+
inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
|
| 213 |
+
outputs=[img],
|
| 214 |
)
|
| 215 |
|
| 216 |
+
demo.queue(api_open=False).launch(show_api=False)
|