File size: 1,129 Bytes
56670e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb6473
56670e1
ddb6473
56670e1
 
 
 
 
ddb6473
56670e1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_path = "RUSpam/spam_deberta_v4"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)

def predict_spam(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=1)
        predicted_class = torch.argmax(logits, dim=1).item()
    
    spam_probability = probabilities[0][1].item()
    not_spam_probability = probabilities[0][0].item()
    
    result = "Спам" if predicted_class == 1 else "Не спам"
    
    return result

    
# Создание интерфейса Gradio
iface = gr.Interface(
    fn=predict_spam,
    inputs=gr.Textbox(lines=5, label="Введите текст"),
    outputs=[
        gr.Label(label="Результат")
    ],
    title="Определение спама в русскоязычных текстах"
)

iface.launch()