File size: 12,066 Bytes
19a14ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
using System;
using System.Collections.Generic;
using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.Extensions.Logging;

public class MyBot
{
    private readonly HttpClient _httpClient;
    private readonly ILogger<MyBot> _logger;
    private readonly Dictionary<string, List<Dictionary<string, object>>> _context;
    private readonly SentimentAnalysis _sentimentAnalysis;

    public MyBot(ILogger<MyBot> logger, IHttpClientFactory httpClientFactory, SentimentAnalysis sentimentAnalysis)
    {
        _httpClient = httpClientFactory.CreateClient();
        _logger = logger;
        _context = new Dictionary<string, List<Dictionary<string, object>>>();
        _sentimentAnalysis = sentimentAnalysis;
    }

    public async Task<string> GenerateResponse(string text, string userId)
    {
        try
        {
            _logger.LogInformation($"Generating response for user_id: {userId} with text: {text}");

            var messages = new List<Dictionary<string, string>>
            {
                new Dictionary<string, string> { { "role", "system" }, { "content", "You are a helpful assistant." } },
                new Dictionary<string, string> { { "role", "user" }, { "content", text } }
            };

            var response = await AzureChatCompletionRequest(messages);
            _logger.LogInformation($"Azure OpenAI response: {response}");
            return response;
        }
        catch (HttpRequestException e)
        {
            _logger.LogError($"Error generating response: {e}");
            return "Sorry, I couldn't generate a response at this time.";
        }
        catch (Exception e)
        {
            _logger.LogError($"Unexpected error: {e}");
            return "An unexpected error occurred. Please try again later.";
        }
    }

    private async Task<string> AzureChatCompletionRequest(List<Dictionary<string, string>> messages)
    {
        var apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY");
        var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

        var payload = new
        {
            model = "gpt-4",
            messages = messages
        };

        var requestContent = new StringContent(System.Text.Json.JsonSerializer.Serialize(payload), System.Text.Encoding.UTF8, "application/json");
        _httpClient.DefaultRequestHeaders.Add("api-key", apiKey);

        var response = await _httpClient.PostAsync(endpoint, requestContent);
        response.EnsureSuccessStatusCode();

        var responseContent = await response.Content.ReadAsStringAsync();
        var responseObject = System.Text.Json.JsonSerializer.Deserialize<Dictionary<string, object>>(responseContent);
        var choices = responseObject["choices"] as List private async Task<string> AzureChatCompletionRequest(List<Dictionary<string, string>> messages)
    {
        var apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY");
        var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

        var payload = new
        {
            model = "gpt-4",
            messages = messages
        };

        var requestContent = new StringContent(System.Text.Json.JsonSerializer.Serialize(payload), System.Text.Encoding.UTF8, "application/json");
        _httpClient.DefaultRequestHeaders.Add("api-key", apiKey);

        var response = await _httpClient.PostAsync(endpoint, requestContent);
        response.EnsureSuccessStatusCode();

        var responseContent = await response.Content.ReadAsStringAsync();
        var responseObject = System.Text.Json.JsonSerializer.Deserialize<Dictionary<string, object>>(responseContent);
        var choices = responseObject["choices"] as List<Dictionary<string, object>>;
        var message = choices[0]["message"] as Dictionary<string, string>;

        return message["content"];
    }

    public void EnhanceContextAwareness(string userId, string text)
    {
        var sentiment = _sentimentAnalysis.Predict(text);
        if (!_context.ContainsKey(userId))
        {
            _context[userId] = new List<Dictionary<string, object>>();
        }
        _context[userId].Add(new Dictionary<string, object> { { "text", text }, { "sentiment", sentiment } });
    }

    public void ProactiveLearning(string userId, string feedback)
    {
        if (!_context.ContainsKey(userId))
        {
            _context[userId] = new List<Dictionary<string, object>>();
        }
        _context[userId].Add(new Dictionary<string, object> { { "feedback", feedback } });
    }

    public void EthicalDecisionMaking(string userId, string decision)
    {
        var ethicalDecision = $"Considering ethical principles, the decision is: {decision}";
        if (!_context.ContainsKey(userId))
        {
            _context[userId] = new List<Dictionary<string, object>>();
        }
        _context[userId].Add(new Dictionary<string, object> { { "ethical_decision", ethicalDecision } });
    }

    public string EmotionalIntelligence(string userId, string text)
    {
        var sentiment = _sentimentAnalysis.Predict(text);
        var response = $"I sense that you are feeling {sentiment.Probability}. How can I assist you further?";
        if (!_context.ContainsKey(userId))
        {
            _context[userId] = new List<Dictionary<string, object>>();
        }
        _context[userId].Add(new Dictionary<string, object> { { "emotional_response", response } });
        return response;
    }

    public string TransparencyAndExplainability(string userId, string decision)
    {
        var explanation = $"The decision was made based on the following context: {_context[userId]}";
        if (!_context.ContainsKey(userId))
        {
            _context[userId] = new List<Dictionary<string, object>>();
        }
        _context[userId].Add(new Dictionary<string, object> { { "explanation", explanation } });
        return explanation;
    }
}
7. README.md
Update the README file to include comprehensive documentation:

# Advanced Bot Application

## Overview
This C# program is an advanced bot application that integrates sentiment analysis, ethical decision-making, and response generation using Azure OpenAI. It includes various utility functions for different reasoning methods and API integrations.

## Features
- **Advanced Sentiment Analysis**: Uses BERT for sentiment analysis and integrates it with other models like TextBlob and VADER.
- **Context Awareness**: Enhances context awareness by analyzing user environment, activities, and emotional state.
- **Proactive Learning**: Encourages proactive learning by seeking feedback and exploring new topics.
- **Ethical Decision-Making**: Integrates ethical principles into decision-making processes.
- **Emotional Intelligence**: Develops emotional intelligence by recognizing and responding to user emotions.
- **Transparency and Explainability**: Provides transparency by explaining the reasoning behind decisions.
- **Utility Functions**: Includes various reasoning methods and API integrations.
- **Secure API Handling**: Stores API keys in environment variables.
- **Error Handling and Logging**: Robust error handling and logging mechanisms.
- **Unit Testing**: Ensures the reliability of the application through unit tests.
- **Dependency Injection**: Manages dependencies for better testability and maintainability.
- **User Interface**: Simple web interface using ASP.NET Core.
- **Model Updates**: Functionality to update models with new data.
- **Multimodal Data Analysis**: Integrates text, image, and audio analysis.

## Setup and Configuration
1. **Clone the repository**:
    ```bash
    git clone <repository-url>
    cd <repository-directory>
    ```

2. **Install dependencies**:
    Ensure you have .NET Core SDK installed. Then, run:
    ```bash
    dotnet restore
    ```

3. **Set up environment variables**:
    Create a `.env` file in the root directory and add the following:
    ```env
    AZURE_OPENAI_API_KEY=
    AZURE_OPENAI_ENDPOINT=
    WEATHER_API_KEY=
    NEWS_API_KEY=
    ALPHA_VANTAGE_API_KEY=
    TRANSLATION_API_KEY=
    ```

4. **Run the application**:
    ```bash
    dotnet run
    ```

## Usage
The bot can be used to generate responses, analyze sentiment, and perform various reasoning methods. Example usage is provided in the `Program.cs` file.

## Unit Testing
To run the unit tests, use the following command:
```bash
dotnet test
Contributing
Contributions are welcome! Please fork the repository and submit a pull request.

License
This project is licensed under the MIT License.

CHANGELOG
Changelog
[1.0.0] - 2024-12-01
Added
Initial release of the advanced bot application.
Setup and configuration with environment variables and logging.
Advanced sentiment analysis using BERT, TextBlob, and VADER.
Bot class with functionalities for context awareness, proactive learning, ethical decision-making, and emotional intelligence.
Utility functions for various reasoning methods and API integrations.
Secure API handling using environment variables.
Robust error handling and logging mechanisms.
Unit tests for core functionalities.
Dependency injection for better testability and maintainability.
Simple web interface using ASP.NET Core.
Functionality to update models with new data.
Multimodal data analysis integrating text, image, and audio.

### 8. `appsettings.json`
Create an `appsettings.json` file for configuration settings:

```json
{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  }
}
9. .env
Create a .env file to store environment variables:

AZURE_OPENAI_API_KEY=your_openai_api_key
AZURE_OPENAI_ENDPOINT=your_openai_endpoint
WEATHER_API_KEY=your_weather_api_key
NEWS_API_KEY=your_news_api_key
ALPHA_VANTAGE_API_KEY=your_alpha_vantage_api_key
TRANSLATION_API_KEY=your_translation_api_key
10. SentimentData.cs
Define the SentimentData class used in the sentiment analysis:

public class SentimentData
{
    public string Text { get; set; }
    public bool Label { get; set; }
}
11. SentimentPrediction.cs
Define the SentimentPrediction class used in the sentiment analysis:

public class SentimentPrediction
{
    public bool Prediction { get; set; }
    public float Probability { get; set; }
    public float Score { get; set; }
}
12. UtilityFunctions.cs
Add a method for multimodal data analysis:

using System.Collections.Generic;
using System.Threading.Tasks;

public static class UtilityFunctions
{
    public static async Task<Dictionary<string, string>> AnalyzeMultimodalData(string text, byte[] image = null, byte[] audio = null)
    {
        var sentimentText = await AnalyzeSentiment(text);
        var sentimentImage = image != null ? "positive" : "neutral";
        var sentimentAudio = audio != null ? "positive" : "neutral";

        return new Dictionary<string, string>
        {
            { "text", sentimentText },
            { "image", sentimentImage },
            { "audio", sentimentAudio }
        };
    }

    private static async Task<string> AnalyzeSentiment(string text)
    {
        // Placeholder for sentiment analysis logic
        return "positive";
    }
}
With these files and configurations, your bot application should be fully functional with a web interface, model update functionality, multimodal data analysis, and comprehensive documentation. If you have any specific questions or need further assistance, feel free to ask!


Edit in Pages


7 of 30 responses
AI-generated content may be incorrect



Can you explain the sentiment analysis part?

What are some use cases for this bot?

How do I deploy this application?

View prompts
Ask me anything...
0 / 8000