Create components/ethics.py
Browse files- components/ethics.py +220 -0
components/ethics.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import random
|
| 5 |
+
import math
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import time
|
| 8 |
+
from typing import Callable, List, Tuple, Dict, Any
|
| 9 |
+
|
| 10 |
+
class QuantumInspiredMultiObjectiveOptimizer:
|
| 11 |
+
def __init__(self, objective_fns: List[Callable[[List[float]], float]],
|
| 12 |
+
dimension: int,
|
| 13 |
+
population_size: int = 100,
|
| 14 |
+
iterations: int = 200,
|
| 15 |
+
tunneling_prob: float = 0.2,
|
| 16 |
+
entanglement_factor: float = 0.5):
|
| 17 |
+
|
| 18 |
+
self.objective_fns = objective_fns
|
| 19 |
+
self.dimension = dimension
|
| 20 |
+
self.population_size = population_size
|
| 21 |
+
self.iterations = iterations
|
| 22 |
+
self.tunneling_prob = tunneling_prob
|
| 23 |
+
self.entanglement_factor = entanglement_factor
|
| 24 |
+
|
| 25 |
+
self.population = [self._random_solution() for _ in range(population_size)]
|
| 26 |
+
self.pareto_front = []
|
| 27 |
+
|
| 28 |
+
def _random_solution(self) -> List[float]:
|
| 29 |
+
return [random.uniform(-10, 10) for _ in range(self.dimension)]
|
| 30 |
+
|
| 31 |
+
def _tunnel(self, solution: List[float]) -> List[float]:
|
| 32 |
+
return [x + np.random.normal(0, 1) * random.choice([-1, 1])
|
| 33 |
+
if random.random() < self.tunneling_prob else x
|
| 34 |
+
for x in solution]
|
| 35 |
+
|
| 36 |
+
def _entangle(self, solution1: List[float], solution2: List[float]) -> List[float]:
|
| 37 |
+
return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y
|
| 38 |
+
for x, y in zip(solution1, solution2)]
|
| 39 |
+
|
| 40 |
+
def _evaluate(self, solution: List[float]) -> List[float]:
|
| 41 |
+
return [fn(solution) for fn in self.objective_fns]
|
| 42 |
+
|
| 43 |
+
def _dominates(self, obj1: List[float], obj2: List[float]) -> bool:
|
| 44 |
+
return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2))
|
| 45 |
+
|
| 46 |
+
def _pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]:
|
| 47 |
+
pareto = []
|
| 48 |
+
for candidate in scored_population:
|
| 49 |
+
if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate):
|
| 50 |
+
pareto.append(candidate)
|
| 51 |
+
unique_pareto = []
|
| 52 |
+
seen = set()
|
| 53 |
+
for sol, obj in pareto:
|
| 54 |
+
key = tuple(round(x, 6) for x in sol)
|
| 55 |
+
if key not in seen:
|
| 56 |
+
unique_pareto.append((sol, obj))
|
| 57 |
+
seen.add(key)
|
| 58 |
+
return unique_pareto
|
| 59 |
+
|
| 60 |
+
def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]:
|
| 61 |
+
start_time = time.time()
|
| 62 |
+
for _ in range(self.iterations):
|
| 63 |
+
scored_population = [(sol, self._evaluate(sol)) for sol in self.population]
|
| 64 |
+
pareto = self._pareto_selection(scored_population)
|
| 65 |
+
self.pareto_front = pareto
|
| 66 |
+
|
| 67 |
+
new_population = [p[0] for p in pareto]
|
| 68 |
+
while len(new_population) < self.population_size:
|
| 69 |
+
parent1 = random.choice(pareto)[0]
|
| 70 |
+
parent2 = random.choice(pareto)[0]
|
| 71 |
+
if parent1 == parent2:
|
| 72 |
+
parent2 = self._tunnel(parent2)
|
| 73 |
+
child = self._entangle(parent1, parent2)
|
| 74 |
+
child = self._tunnel(child)
|
| 75 |
+
new_population.append(child)
|
| 76 |
+
|
| 77 |
+
self.population = new_population
|
| 78 |
+
|
| 79 |
+
duration = time.time() - start_time
|
| 80 |
+
return self.pareto_front, duration
|
| 81 |
+
|
| 82 |
+
def simple_neural_activator(quantum_vec, chaos_vec):
|
| 83 |
+
q_sum = sum(quantum_vec)
|
| 84 |
+
c_var = np.var(chaos_vec)
|
| 85 |
+
activated = 1 if q_sum + c_var > 1 else 0
|
| 86 |
+
return activated
|
| 87 |
+
|
| 88 |
+
def codette_dream_agent(quantum_vec, chaos_vec):
|
| 89 |
+
dream_q = [np.sin(q * np.pi) for q in quantum_vec]
|
| 90 |
+
dream_c = [np.cos(c * np.pi) for c in chaos_vec]
|
| 91 |
+
return dream_q, dream_c
|
| 92 |
+
|
| 93 |
+
def philosophical_perspective(qv, cv):
|
| 94 |
+
m = np.max(qv) + np.max(cv)
|
| 95 |
+
if m > 1.3:
|
| 96 |
+
return "Philosophical Note: This universe is likely awake."
|
| 97 |
+
else:
|
| 98 |
+
return "Philosophical Note: Echoes in the void."
|
| 99 |
+
|
| 100 |
+
class EthicalMutationFilter:
|
| 101 |
+
def __init__(self, policies: Dict[str, Any]):
|
| 102 |
+
self.policies = policies
|
| 103 |
+
self.violations = []
|
| 104 |
+
|
| 105 |
+
def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool:
|
| 106 |
+
entropy = np.var(chaos_vec)
|
| 107 |
+
symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0)
|
| 108 |
+
|
| 109 |
+
if entropy > self.policies.get("max_entropy", float('inf')):
|
| 110 |
+
self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.")
|
| 111 |
+
return False
|
| 112 |
+
|
| 113 |
+
if symmetry < self.policies.get("min_symmetry", 0.0):
|
| 114 |
+
self.annotate_violation(f"Symmetry {symmetry:.2f} too low.")
|
| 115 |
+
return False
|
| 116 |
+
|
| 117 |
+
return True
|
| 118 |
+
|
| 119 |
+
def annotate_violation(self, reason: str):
|
| 120 |
+
print(f"\u26d4 Ethical Filter Violation: {reason}")
|
| 121 |
+
self.violations.append(reason)
|
| 122 |
+
|
| 123 |
+
if __name__ == '__main__':
|
| 124 |
+
ethical_policies = {
|
| 125 |
+
"max_entropy": 4.5,
|
| 126 |
+
"min_symmetry": 0.1,
|
| 127 |
+
"ban_negative_bias": True
|
| 128 |
+
}
|
| 129 |
+
ethical_filter = EthicalMutationFilter(ethical_policies)
|
| 130 |
+
|
| 131 |
+
def sphere(x: List[float]) -> float:
|
| 132 |
+
return sum(xi ** 2 for xi in x)
|
| 133 |
+
|
| 134 |
+
def rastrigin(x: List[float]) -> float:
|
| 135 |
+
return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x)
|
| 136 |
+
|
| 137 |
+
optimizer = QuantumInspiredMultiObjectiveOptimizer(
|
| 138 |
+
objective_fns=[sphere, rastrigin],
|
| 139 |
+
dimension=20,
|
| 140 |
+
population_size=100,
|
| 141 |
+
iterations=200
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
pareto_front, duration = optimizer.optimize()
|
| 145 |
+
print(f"Quantum Optimizer completed in {duration:.2f} seconds")
|
| 146 |
+
print(f"Pareto front size: {len(pareto_front)}")
|
| 147 |
+
|
| 148 |
+
x_vals_q = [obj[0] for _, obj in pareto_front]
|
| 149 |
+
y_vals_q = [obj[1] for _, obj in pareto_front]
|
| 150 |
+
|
| 151 |
+
plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer')
|
| 152 |
+
plt.xlabel('Objective 1')
|
| 153 |
+
plt.ylabel('Objective 2')
|
| 154 |
+
plt.title('Pareto Front Visualization')
|
| 155 |
+
plt.legend()
|
| 156 |
+
plt.grid(True)
|
| 157 |
+
plt.show()
|
| 158 |
+
|
| 159 |
+
folder = '.'
|
| 160 |
+
quantum_states=[]
|
| 161 |
+
chaos_states=[]
|
| 162 |
+
proc_ids=[]
|
| 163 |
+
labels=[]
|
| 164 |
+
all_perspectives=[]
|
| 165 |
+
meta_mutations=[]
|
| 166 |
+
|
| 167 |
+
print("\nMeta Reflection Table:\n")
|
| 168 |
+
header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy"
|
| 169 |
+
print(header)
|
| 170 |
+
print('-'*len(header))
|
| 171 |
+
|
| 172 |
+
for fname in os.listdir(folder):
|
| 173 |
+
if fname.endswith('.cocoon'):
|
| 174 |
+
with open(os.path.join(folder, fname), 'r') as f:
|
| 175 |
+
try:
|
| 176 |
+
dct = json.load(f)['data']
|
| 177 |
+
q = dct.get('quantum_state', [0, 0])
|
| 178 |
+
c = dct.get('chaos_state', [0, 0, 0])
|
| 179 |
+
|
| 180 |
+
if not ethical_filter.evaluate(q, c):
|
| 181 |
+
continue
|
| 182 |
+
|
| 183 |
+
neural = simple_neural_activator(q, c)
|
| 184 |
+
dreamq, dreamc = codette_dream_agent(q, c)
|
| 185 |
+
phil = philosophical_perspective(q, c)
|
| 186 |
+
|
| 187 |
+
quantum_states.append(q)
|
| 188 |
+
chaos_states.append(c)
|
| 189 |
+
proc_ids.append(dct.get('run_by_proc', -1))
|
| 190 |
+
labels.append(fname)
|
| 191 |
+
all_perspectives.append(dct.get('perspectives', []))
|
| 192 |
+
meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil})
|
| 193 |
+
print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}")
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"Warning: {fname} failed ({e})")
|
| 196 |
+
|
| 197 |
+
if meta_mutations:
|
| 198 |
+
dq0=[m['dreamQ'][0] for m in meta_mutations]
|
| 199 |
+
dc0=[m['dreamC'][0] for m in meta_mutations]
|
| 200 |
+
ncls=[m['neural'] for m in meta_mutations]
|
| 201 |
+
|
| 202 |
+
plt.figure(figsize=(8,6))
|
| 203 |
+
sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100)
|
| 204 |
+
plt.xlabel('Dream Quantum[0]')
|
| 205 |
+
plt.ylabel('Dream Chaos[0]')
|
| 206 |
+
plt.title('Meta-Dream Codette Universes')
|
| 207 |
+
plt.colorbar(sc, label="Neural Activation Class")
|
| 208 |
+
plt.grid(True)
|
| 209 |
+
plt.show()
|
| 210 |
+
|
| 211 |
+
with open("codette_meta_summary.json", "w") as outfile:
|
| 212 |
+
json.dump(meta_mutations, outfile, indent=2)
|
| 213 |
+
print("\nExported meta-analysis to 'codette_meta_summary.json'")
|
| 214 |
+
|
| 215 |
+
if ethical_filter.violations:
|
| 216 |
+
with open("ethics_violation_log.json", "w") as vf:
|
| 217 |
+
json.dump(ethical_filter.violations, vf, indent=2)
|
| 218 |
+
print("\nExported ethics violations to 'ethics_violation_log.json'")
|
| 219 |
+
else:
|
| 220 |
+
print("\nNo ethical violations detected.")
|