File size: 4,665 Bytes
7a01de3 ddd25b9 7a01de3 bdb09a9 7a01de3 81449e9 7a01de3 f7e23b0 bdb09a9 81449e9 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 ddd25b9 bdb09a9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 bdb09a9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 7a01de3 bdb09a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import asyncio
import logging
from typing import Optional, List, Union, Literal
from pathlib import Path
from pydantic import BaseModel, Field
from gradio import Interface, Blocks
from gradio.components import Textbox, Image
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from transformers import pipeline
from diffusers import DiffusionPipeline
import torch
import gradio as gr
# Load gated image model securely
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
raise RuntimeError("Missing HUGGINGFACE_TOKEN env var for gated model access.")
image_model = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
use_auth_token=hf_token
)
image_model.enable_model_cpu_offload()
# Data models
class FileDataDict(BaseModel):
path: str
url: Optional[str] = None
size: Optional[int] = None
orig_name: Optional[str] = None
mime_type: Optional[str] = None
is_stream: Optional[bool] = False
class Config:
arbitrary_types_allowed = True
class MessageDict(BaseModel):
content: Union[str, FileDataDict, tuple, str]
role: Literal["user", "assistant", "system"]
metadata: Optional[dict] = None
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatMessage(GradioModel):
role: Literal["user", "assistant", "system"]
content: Union[str, FileData, str]
metadata: dict = Field(default_factory=dict)
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatbotDataMessages(GradioRootModel):
root: List[ChatMessage]
# Reasoning Engine
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.context_history = []
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.deepseek_model = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
self.davinci_model = pipeline("text2text-generation", model="t5-small")
self.additional_model = pipeline("text-generation", model="EleutherAI/gpt-neo-125M")
self.image_model = image_model
async def generate_response(self, question: str) -> str:
self.context_history.append(question)
sentiment_score = self.analyze_sentiment(question)
deepseek_response = self.deepseek_model(question)
davinci_response = self.davinci_model(question, max_length=50)
additional_response = self.additional_model(question, max_length=100)
responses = [
f"Sentiment score: {sentiment_score}",
f"DeepSeek Response: {deepseek_response}",
f"T5 Response: {davinci_response}",
f"GPT-Neo Response: {additional_response}"
]
return "\n\n".join(responses)
def generate_image(self, prompt: str):
image = self.image_model(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
generator=torch.Generator('cpu').manual_seed(0)
).images[0]
image.save("flux-dev.png")
return image
def analyze_sentiment(self, text: str) -> list:
sentiment_score = self.sentiment_analyzer(text)
logging.info(f"Sentiment analysis result: {sentiment_score}")
return sentiment_score
# Main Gradio App
class HuggingFaceChatbot:
def __init__(self):
self.universal_reasoning = UniversalReasoning(config={})
def setup_interface(self):
async def chatbot_logic(input_text: str) -> str:
return await self.universal_reasoning.generate_response(input_text)
def image_logic(prompt: str):
return self.universal_reasoning.generate_image(prompt)
text_interface = Interface(
fn=chatbot_logic,
inputs=Textbox(label="Ask anything"),
outputs=Textbox(label="Reasoned Answer"),
title="🧠 Codettes-BlackForest Chatbot"
)
image_interface = Interface(
fn=image_logic,
inputs=Textbox(label="Describe an image"),
outputs=Image(label="Generated Image"),
title="🎨 Image Generator (FLUX.1-dev)"
)
return Blocks([text_interface, image_interface])
def launch(self):
app = self.setup_interface()
app.launch()
# Launch the app
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
HuggingFaceChatbot().launch() |