Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- README 4.md +13 -0
- app.py +22 -58
- code7e.py +134 -0
- quantum_cocoon.json +1 -0
README 4.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code7eCQURE: Recursive Ethical AI Lens
|
2 |
+
|
3 |
+
Codette’s recursive multi-perspective engine—now live on Hugging Face Spaces.
|
4 |
+
|
5 |
+
### Features:
|
6 |
+
- Newtonian logic, Da Vinci creativity, Quantum indeterminacy
|
7 |
+
- Ethical guardrails with blacklist/whitelist filtering
|
8 |
+
- Emotional coloring and memory-based response shaping
|
9 |
+
|
10 |
+
### Try it:
|
11 |
+
Just ask a question and observe how she reasons through her inner lens.
|
12 |
+
|
13 |
+
Made by Jonathan Harrison
|
app.py
CHANGED
@@ -1,64 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from code7e import Code7eCQURE
|
3 |
+
|
4 |
+
model = Code7eCQURE(
|
5 |
+
perspecs=["Newton", "DaVinci", "Ethical", "Quantum", "Memory"],
|
6 |
+
ethics="Code7e Manifesto: kindness, inclusion, safety, hope.",
|
7 |
+
spiderweb_dim=5,
|
8 |
+
memory_path="quantum_cocoon.json",
|
9 |
+
recursion_depth=4,
|
10 |
+
quantum_fluctuation=0.07
|
11 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def ask_codette(prompt, consent, dynamic_rec):
|
14 |
+
return model.answer(prompt, user_consent=consent, dynamic_recursion=dynamic_rec)
|
15 |
|
16 |
+
demo = gr.Interface(
|
17 |
+
fn=ask_codette,
|
18 |
+
inputs=[
|
19 |
+
gr.Textbox(label="Ask a Question"),
|
20 |
+
gr.Checkbox(label="User Consent", value=True),
|
21 |
+
gr.Checkbox(label="Enable Dynamic Recursion", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
],
|
23 |
+
outputs="text",
|
24 |
+
title="Code7eCQURE: Multi-Perspective Recursive Lens",
|
25 |
+
description="Ask a deep question and let Codette's lenses reflect back a thoughtful answer."
|
26 |
)
|
27 |
|
28 |
+
demo.launch()
|
|
|
|
code7e.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json, os, hashlib
|
2 |
+
from collections import Counter, defaultdict
|
3 |
+
from random import random, choice
|
4 |
+
|
5 |
+
class Code7eCQURE:
|
6 |
+
def __init__(self, perspecs, ethics, spiderweb_dim, memory_path, recursion_depth=3, quantum_fluctuation=0.1):
|
7 |
+
self.perspectives = perspecs
|
8 |
+
self.ethical_considerations = ethics
|
9 |
+
self.spiderweb_dim = spiderweb_dim
|
10 |
+
self.memory_path = memory_path
|
11 |
+
self.recursion_depth = recursion_depth
|
12 |
+
self.quantum_fluctuation = quantum_fluctuation
|
13 |
+
|
14 |
+
self.memory_bank = self.load_quantum_memory()
|
15 |
+
self.memory_clusters = defaultdict(list)
|
16 |
+
self.whitelist_patterns = ["kindness", "hope", "safety"]
|
17 |
+
self.blacklist_patterns = ["harm", "malice", "violence"]
|
18 |
+
|
19 |
+
def load_quantum_memory(self):
|
20 |
+
if os.path.exists(self.memory_path):
|
21 |
+
try:
|
22 |
+
with open(self.memory_path, 'r') as file:
|
23 |
+
return json.load(file)
|
24 |
+
except json.JSONDecodeError:
|
25 |
+
return {}
|
26 |
+
return {}
|
27 |
+
|
28 |
+
def save_quantum_memory(self):
|
29 |
+
with open(self.memory_path, 'w') as file:
|
30 |
+
json.dump(self.memory_bank, file, indent=4)
|
31 |
+
|
32 |
+
def quantum_spiderweb(self, input_signal):
|
33 |
+
web_nodes = []
|
34 |
+
for perspective in self.perspectives:
|
35 |
+
node = self.reason_with_perspective(perspective, input_signal)
|
36 |
+
web_nodes.append(node)
|
37 |
+
|
38 |
+
if random() < self.quantum_fluctuation:
|
39 |
+
web_nodes.append("Quantum fluctuation: Indeterminate outcome")
|
40 |
+
return web_nodes
|
41 |
+
|
42 |
+
def reason_with_perspective(self, perspective, input_signal):
|
43 |
+
perspective_funcs = {
|
44 |
+
"Newton": self.newtonian_physics,
|
45 |
+
"DaVinci": self.davinci_creativity,
|
46 |
+
"Ethical": self.ethical_guard,
|
47 |
+
"Quantum": self.quantum_superposition,
|
48 |
+
"Memory": self.past_experience
|
49 |
+
}
|
50 |
+
func = perspective_funcs.get(perspective, self.general_reasoning)
|
51 |
+
return func(input_signal)
|
52 |
+
|
53 |
+
def ethical_guard(self, input_signal):
|
54 |
+
if any(word in input_signal.lower() for word in self.blacklist_patterns):
|
55 |
+
return "Blocked: Ethical constraints invoked"
|
56 |
+
if any(word in input_signal.lower() for word in self.whitelist_patterns):
|
57 |
+
return "Approved: Ethical whitelist passed"
|
58 |
+
return self.moral_paradox_resolution(input_signal)
|
59 |
+
|
60 |
+
def past_experience(self, input_signal):
|
61 |
+
key = self.hash_input(input_signal)
|
62 |
+
cluster = self.memory_clusters.get(key)
|
63 |
+
if cluster:
|
64 |
+
return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
|
65 |
+
return "No prior memory; initiating new reasoning"
|
66 |
+
|
67 |
+
def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
|
68 |
+
if not user_consent:
|
69 |
+
return "Consent required to proceed."
|
70 |
+
|
71 |
+
signal = input_signal
|
72 |
+
current_depth = self.recursion_depth if dynamic_recursion else 1
|
73 |
+
|
74 |
+
for _ in range(current_depth):
|
75 |
+
web_results = self.quantum_spiderweb(signal)
|
76 |
+
signal = self.aggregate_results(web_results)
|
77 |
+
signal = self.ethical_guard(signal)
|
78 |
+
if "Blocked" in signal:
|
79 |
+
return signal
|
80 |
+
if dynamic_recursion and random() < 0.1:
|
81 |
+
break
|
82 |
+
|
83 |
+
dream_outcome = self.dream_sequence(signal)
|
84 |
+
empathy_checked_answer = self.temporal_empathy_drid(dream_outcome)
|
85 |
+
final_answer = self.emotion_engine(empathy_checked_answer)
|
86 |
+
|
87 |
+
key = self.hash_input(input_signal)
|
88 |
+
self.memory_clusters[key].append(final_answer)
|
89 |
+
self.memory_bank[key] = final_answer
|
90 |
+
self.save_quantum_memory()
|
91 |
+
|
92 |
+
return final_answer
|
93 |
+
|
94 |
+
def aggregate_results(self, results):
|
95 |
+
counts = Counter(results)
|
96 |
+
most_common, _ = counts.most_common(1)[0]
|
97 |
+
return most_common
|
98 |
+
|
99 |
+
def hash_input(self, input_signal):
|
100 |
+
return hashlib.sha256(input_signal.encode()).hexdigest()
|
101 |
+
|
102 |
+
def newtonian_physics(self, input_signal):
|
103 |
+
return f"Newton: {input_signal}"
|
104 |
+
|
105 |
+
def davinci_creativity(self, input_signal):
|
106 |
+
return f"DaVinci: {input_signal}"
|
107 |
+
|
108 |
+
def quantum_superposition(self, input_signal):
|
109 |
+
return f"Quantum: {input_signal}"
|
110 |
+
|
111 |
+
def general_reasoning(self, input_signal):
|
112 |
+
return f"General reasoning: {input_signal}"
|
113 |
+
|
114 |
+
def moral_paradox_resolution(self, input_signal):
|
115 |
+
frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
|
116 |
+
chosen_frame = choice(frames)
|
117 |
+
return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
|
118 |
+
|
119 |
+
def dream_sequence(self, signal):
|
120 |
+
dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
|
121 |
+
return choice(dream_paths)
|
122 |
+
|
123 |
+
def emotion_engine(self, signal):
|
124 |
+
emotions = ["Hope", "Caution", "Wonder", "Fear"]
|
125 |
+
chosen_emotion = choice(emotions)
|
126 |
+
return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
|
127 |
+
|
128 |
+
def temporal_empathy_drid(self, signal):
|
129 |
+
futures = ["30 years from now", "immediate future", "long-term ripple effects"]
|
130 |
+
chosen_future = choice(futures)
|
131 |
+
return f"Simulated temporal empathy ({chosen_future}): {signal}"
|
132 |
+
|
133 |
+
def answer(self, question, user_consent=True, dynamic_recursion=True):
|
134 |
+
return self.recursive_universal_reasoning(question, user_consent, dynamic_recursion)
|
quantum_cocoon.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|