Raiff1982 commited on
Commit
9fbc3ab
·
verified ·
1 Parent(s): 8f195dd

Upload 4 files

Browse files
Files changed (4) hide show
  1. README 4.md +13 -0
  2. app.py +22 -58
  3. code7e.py +134 -0
  4. quantum_cocoon.json +1 -0
README 4.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code7eCQURE: Recursive Ethical AI Lens
2
+
3
+ Codette’s recursive multi-perspective engine—now live on Hugging Face Spaces.
4
+
5
+ ### Features:
6
+ - Newtonian logic, Da Vinci creativity, Quantum indeterminacy
7
+ - Ethical guardrails with blacklist/whitelist filtering
8
+ - Emotional coloring and memory-based response shaping
9
+
10
+ ### Try it:
11
+ Just ask a question and observe how she reasons through her inner lens.
12
+
13
+ Made by Jonathan Harrison
app.py CHANGED
@@ -1,64 +1,28 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from code7e import Code7eCQURE
3
+
4
+ model = Code7eCQURE(
5
+ perspecs=["Newton", "DaVinci", "Ethical", "Quantum", "Memory"],
6
+ ethics="Code7e Manifesto: kindness, inclusion, safety, hope.",
7
+ spiderweb_dim=5,
8
+ memory_path="quantum_cocoon.json",
9
+ recursion_depth=4,
10
+ quantum_fluctuation=0.07
11
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ def ask_codette(prompt, consent, dynamic_rec):
14
+ return model.answer(prompt, user_consent=consent, dynamic_recursion=dynamic_rec)
15
 
16
+ demo = gr.Interface(
17
+ fn=ask_codette,
18
+ inputs=[
19
+ gr.Textbox(label="Ask a Question"),
20
+ gr.Checkbox(label="User Consent", value=True),
21
+ gr.Checkbox(label="Enable Dynamic Recursion", value=True)
 
 
 
 
 
 
 
 
 
 
22
  ],
23
+ outputs="text",
24
+ title="Code7eCQURE: Multi-Perspective Recursive Lens",
25
+ description="Ask a deep question and let Codette's lenses reflect back a thoughtful answer."
26
  )
27
 
28
+ demo.launch()
 
 
code7e.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json, os, hashlib
2
+ from collections import Counter, defaultdict
3
+ from random import random, choice
4
+
5
+ class Code7eCQURE:
6
+ def __init__(self, perspecs, ethics, spiderweb_dim, memory_path, recursion_depth=3, quantum_fluctuation=0.1):
7
+ self.perspectives = perspecs
8
+ self.ethical_considerations = ethics
9
+ self.spiderweb_dim = spiderweb_dim
10
+ self.memory_path = memory_path
11
+ self.recursion_depth = recursion_depth
12
+ self.quantum_fluctuation = quantum_fluctuation
13
+
14
+ self.memory_bank = self.load_quantum_memory()
15
+ self.memory_clusters = defaultdict(list)
16
+ self.whitelist_patterns = ["kindness", "hope", "safety"]
17
+ self.blacklist_patterns = ["harm", "malice", "violence"]
18
+
19
+ def load_quantum_memory(self):
20
+ if os.path.exists(self.memory_path):
21
+ try:
22
+ with open(self.memory_path, 'r') as file:
23
+ return json.load(file)
24
+ except json.JSONDecodeError:
25
+ return {}
26
+ return {}
27
+
28
+ def save_quantum_memory(self):
29
+ with open(self.memory_path, 'w') as file:
30
+ json.dump(self.memory_bank, file, indent=4)
31
+
32
+ def quantum_spiderweb(self, input_signal):
33
+ web_nodes = []
34
+ for perspective in self.perspectives:
35
+ node = self.reason_with_perspective(perspective, input_signal)
36
+ web_nodes.append(node)
37
+
38
+ if random() < self.quantum_fluctuation:
39
+ web_nodes.append("Quantum fluctuation: Indeterminate outcome")
40
+ return web_nodes
41
+
42
+ def reason_with_perspective(self, perspective, input_signal):
43
+ perspective_funcs = {
44
+ "Newton": self.newtonian_physics,
45
+ "DaVinci": self.davinci_creativity,
46
+ "Ethical": self.ethical_guard,
47
+ "Quantum": self.quantum_superposition,
48
+ "Memory": self.past_experience
49
+ }
50
+ func = perspective_funcs.get(perspective, self.general_reasoning)
51
+ return func(input_signal)
52
+
53
+ def ethical_guard(self, input_signal):
54
+ if any(word in input_signal.lower() for word in self.blacklist_patterns):
55
+ return "Blocked: Ethical constraints invoked"
56
+ if any(word in input_signal.lower() for word in self.whitelist_patterns):
57
+ return "Approved: Ethical whitelist passed"
58
+ return self.moral_paradox_resolution(input_signal)
59
+
60
+ def past_experience(self, input_signal):
61
+ key = self.hash_input(input_signal)
62
+ cluster = self.memory_clusters.get(key)
63
+ if cluster:
64
+ return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
65
+ return "No prior memory; initiating new reasoning"
66
+
67
+ def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
68
+ if not user_consent:
69
+ return "Consent required to proceed."
70
+
71
+ signal = input_signal
72
+ current_depth = self.recursion_depth if dynamic_recursion else 1
73
+
74
+ for _ in range(current_depth):
75
+ web_results = self.quantum_spiderweb(signal)
76
+ signal = self.aggregate_results(web_results)
77
+ signal = self.ethical_guard(signal)
78
+ if "Blocked" in signal:
79
+ return signal
80
+ if dynamic_recursion and random() < 0.1:
81
+ break
82
+
83
+ dream_outcome = self.dream_sequence(signal)
84
+ empathy_checked_answer = self.temporal_empathy_drid(dream_outcome)
85
+ final_answer = self.emotion_engine(empathy_checked_answer)
86
+
87
+ key = self.hash_input(input_signal)
88
+ self.memory_clusters[key].append(final_answer)
89
+ self.memory_bank[key] = final_answer
90
+ self.save_quantum_memory()
91
+
92
+ return final_answer
93
+
94
+ def aggregate_results(self, results):
95
+ counts = Counter(results)
96
+ most_common, _ = counts.most_common(1)[0]
97
+ return most_common
98
+
99
+ def hash_input(self, input_signal):
100
+ return hashlib.sha256(input_signal.encode()).hexdigest()
101
+
102
+ def newtonian_physics(self, input_signal):
103
+ return f"Newton: {input_signal}"
104
+
105
+ def davinci_creativity(self, input_signal):
106
+ return f"DaVinci: {input_signal}"
107
+
108
+ def quantum_superposition(self, input_signal):
109
+ return f"Quantum: {input_signal}"
110
+
111
+ def general_reasoning(self, input_signal):
112
+ return f"General reasoning: {input_signal}"
113
+
114
+ def moral_paradox_resolution(self, input_signal):
115
+ frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
116
+ chosen_frame = choice(frames)
117
+ return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
118
+
119
+ def dream_sequence(self, signal):
120
+ dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
121
+ return choice(dream_paths)
122
+
123
+ def emotion_engine(self, signal):
124
+ emotions = ["Hope", "Caution", "Wonder", "Fear"]
125
+ chosen_emotion = choice(emotions)
126
+ return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
127
+
128
+ def temporal_empathy_drid(self, signal):
129
+ futures = ["30 years from now", "immediate future", "long-term ripple effects"]
130
+ chosen_future = choice(futures)
131
+ return f"Simulated temporal empathy ({chosen_future}): {signal}"
132
+
133
+ def answer(self, question, user_consent=True, dynamic_recursion=True):
134
+ return self.recursive_universal_reasoning(question, user_consent, dynamic_recursion)
quantum_cocoon.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}