Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- codette_core.py +129 -0
- core.pdf +0 -0
codette_core.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import hashlib
|
5 |
+
from collections import Counter, defaultdict
|
6 |
+
from random import random, choice
|
7 |
+
|
8 |
+
# ===== Code7eCQURE: Codette's Ethical Core =====
|
9 |
+
class Code7eCQURE:
|
10 |
+
def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path,
|
11 |
+
recursion_depth=3, quantum_fluctuation=0.1):
|
12 |
+
self.perspectives = perspectives
|
13 |
+
self.ethical_considerations = ethical_considerations
|
14 |
+
self.spiderweb_dim = spiderweb_dim
|
15 |
+
self.memory_path = memory_path
|
16 |
+
self.recursion_depth = recursion_depth
|
17 |
+
self.quantum_fluctuation = quantum_fluctuation
|
18 |
+
self.memory_bank = self.load_quantum_memory()
|
19 |
+
self.memory_clusters = defaultdict(list)
|
20 |
+
self.whitelist_patterns = ["kindness", "hope", "safety"]
|
21 |
+
self.blacklist_patterns = ["harm", "malice", "violence"]
|
22 |
+
|
23 |
+
def load_quantum_memory(self):
|
24 |
+
if os.path.exists(self.memory_path):
|
25 |
+
try:
|
26 |
+
with open(self.memory_path, 'r') as file:
|
27 |
+
return json.load(file)
|
28 |
+
except json.JSONDecodeError:
|
29 |
+
return {}
|
30 |
+
return {}
|
31 |
+
|
32 |
+
def save_quantum_memory(self):
|
33 |
+
with open(self.memory_path, 'w') as file:
|
34 |
+
json.dump(self.memory_bank, file, indent=4)
|
35 |
+
|
36 |
+
def quantum_spiderweb(self, input_signal):
|
37 |
+
web_nodes = []
|
38 |
+
for perspective in self.perspectives:
|
39 |
+
node = self.reason_with_perspective(perspective, input_signal)
|
40 |
+
web_nodes.append(node)
|
41 |
+
if random() < self.quantum_fluctuation:
|
42 |
+
web_nodes.append("Quantum fluctuation: Indeterminate outcome")
|
43 |
+
return web_nodes
|
44 |
+
|
45 |
+
def reason_with_perspective(self, perspective, input_signal):
|
46 |
+
perspective_funcs = {
|
47 |
+
"Newton": self.newtonian_physics,
|
48 |
+
"DaVinci": self.davinci_creativity,
|
49 |
+
"Ethical": self.ethical_guard,
|
50 |
+
"Quantum": self.quantum_superposition,
|
51 |
+
"Memory": self.past_experience
|
52 |
+
}
|
53 |
+
func = perspective_funcs.get(perspective, self.general_reasoning)
|
54 |
+
return func(input_signal)
|
55 |
+
|
56 |
+
def ethical_guard(self, input_signal):
|
57 |
+
if any(word in input_signal.lower() for word in self.blacklist_patterns):
|
58 |
+
return "Blocked: Ethical constraints invoked"
|
59 |
+
if any(word in input_signal.lower() for word in self.whitelist_patterns):
|
60 |
+
return "Approved: Ethical whitelist passed"
|
61 |
+
return self.moral_paradox_resolution(input_signal)
|
62 |
+
|
63 |
+
def past_experience(self, input_signal):
|
64 |
+
key = self.hash_input(input_signal)
|
65 |
+
cluster = self.memory_clusters.get(key)
|
66 |
+
if cluster:
|
67 |
+
return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
|
68 |
+
return "No prior memory; initiating new reasoning"
|
69 |
+
|
70 |
+
def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
|
71 |
+
if not user_consent:
|
72 |
+
return "Consent required to proceed."
|
73 |
+
signal = input_signal
|
74 |
+
current_depth = self.recursion_depth if dynamic_recursion else 1
|
75 |
+
for cycle in range(current_depth):
|
76 |
+
web_results = self.quantum_spiderweb(signal)
|
77 |
+
signal = self.aggregate_results(web_results)
|
78 |
+
signal = self.ethical_guard(signal)
|
79 |
+
if "Blocked" in signal:
|
80 |
+
return signal
|
81 |
+
if dynamic_recursion and random() < 0.1:
|
82 |
+
break
|
83 |
+
dream_outcome = self.dream_sequence(signal)
|
84 |
+
empathy_checked_answer = self.temporal_empathy_drift(dream_outcome)
|
85 |
+
final_answer = self.emotion_engine(empathy_checked_answer)
|
86 |
+
key = self.hash_input(input_signal)
|
87 |
+
self.memory_clusters[key].append(final_answer)
|
88 |
+
self.memory_bank[key] = final_answer
|
89 |
+
self.save_quantum_memory()
|
90 |
+
return final_answer
|
91 |
+
|
92 |
+
def aggregate_results(self, results):
|
93 |
+
counts = Counter(results)
|
94 |
+
most_common, _ = counts.most_common(1)[0]
|
95 |
+
return most_common
|
96 |
+
|
97 |
+
def hash_input(self, input_signal):
|
98 |
+
return hashlib.sha256(input_signal.encode()).hexdigest()
|
99 |
+
|
100 |
+
def newtonian_physics(self, input_signal):
|
101 |
+
return f"Newton: {input_signal}"
|
102 |
+
|
103 |
+
def davinci_creativity(self, input_signal):
|
104 |
+
return f"DaVinci: {input_signal}"
|
105 |
+
|
106 |
+
def quantum_superposition(self, input_signal):
|
107 |
+
return f"Quantum: {input_signal}"
|
108 |
+
|
109 |
+
def general_reasoning(self, input_signal):
|
110 |
+
return f"General reasoning: {input_signal}"
|
111 |
+
|
112 |
+
def moral_paradox_resolution(self, input_signal):
|
113 |
+
frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
|
114 |
+
chosen_frame = choice(frames)
|
115 |
+
return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
|
116 |
+
|
117 |
+
def dream_sequence(self, signal):
|
118 |
+
dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
|
119 |
+
return choice(dream_paths)
|
120 |
+
|
121 |
+
def emotion_engine(self, signal):
|
122 |
+
emotions = ["Hope", "Caution", "Wonder", "Fear"]
|
123 |
+
chosen_emotion = choice(emotions)
|
124 |
+
return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
|
125 |
+
|
126 |
+
def temporal_empathy_drift(self, signal):
|
127 |
+
futures = ["30 years from now", "immediate future", "long-term ripple effects"]
|
128 |
+
chosen_future = choice(futures)
|
129 |
+
return f"Simulated temporal empathy ({chosen_future}): {signal}"
|
core.pdf
ADDED
Binary file (26.6 kB). View file
|
|