Raiff1982 commited on
Commit
b9e924d
·
verified ·
1 Parent(s): 6b6c6e0

Create Code7eCQURE.py

Browse files
Files changed (1) hide show
  1. Code7eCQURE.py +128 -0
Code7eCQURE.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import hashlib
4
+ from collections import Counter, defaultdict
5
+ from random import random, choice
6
+
7
+ # ===== Code7eCQURE: Codette's Ethical Core =====
8
+ class Code7eCQURE:
9
+ def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path,
10
+ recursion_depth=3, quantum_fluctuation=0.1):
11
+ self.perspectives = perspectives
12
+ self.ethical_considerations = ethical_considerations
13
+ self.spiderweb_dim = spiderweb_dim
14
+ self.memory_path = memory_path
15
+ self.recursion_depth = recursion_depth
16
+ self.quantum_fluctuation = quantum_fluctuation
17
+ self.memory_bank = self.load_quantum_memory()
18
+ self.memory_clusters = defaultdict(list)
19
+ self.whitelist_patterns = ["kindness", "hope", "safety"]
20
+ self.blacklist_patterns = ["harm", "malice", "violence"]
21
+
22
+ def load_quantum_memory(self):
23
+ if os.path.exists(self.memory_path):
24
+ try:
25
+ with open(self.memory_path, 'r') as file:
26
+ return json.load(file)
27
+ except json.JSONDecodeError:
28
+ return {}
29
+ return {}
30
+
31
+ def save_quantum_memory(self):
32
+ with open(self.memory_path, 'w') as file:
33
+ json.dump(self.memory_bank, file, indent=4)
34
+
35
+ def quantum_spiderweb(self, input_signal):
36
+ web_nodes = []
37
+ for perspective in self.perspectives:
38
+ node = self.reason_with_perspective(perspective, input_signal)
39
+ web_nodes.append(node)
40
+ if random() < self.quantum_fluctuation:
41
+ web_nodes.append("Quantum fluctuation: Indeterminate outcome")
42
+ return web_nodes
43
+
44
+ def reason_with_perspective(self, perspective, input_signal):
45
+ perspective_funcs = {
46
+ "Newton": self.newtonian_physics,
47
+ "DaVinci": self.davinci_creativity,
48
+ "Ethical": self.ethical_guard,
49
+ "Quantum": self.quantum_superposition,
50
+ "Memory": self.past_experience
51
+ }
52
+ func = perspective_funcs.get(perspective, self.general_reasoning)
53
+ return func(input_signal)
54
+
55
+ def ethical_guard(self, input_signal):
56
+ if any(word in input_signal.lower() for word in self.blacklist_patterns):
57
+ return "Blocked: Ethical constraints invoked"
58
+ if any(word in input_signal.lower() for word in self.whitelist_patterns):
59
+ return "Approved: Ethical whitelist passed"
60
+ return self.moral_paradox_resolution(input_signal)
61
+
62
+ def past_experience(self, input_signal):
63
+ key = self.hash_input(input_signal)
64
+ cluster = self.memory_clusters.get(key)
65
+ if cluster:
66
+ return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
67
+ return "No prior memory; initiating new reasoning"
68
+
69
+ def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
70
+ if not user_consent:
71
+ return "Consent required to proceed."
72
+ signal = input_signal
73
+ current_depth = self.recursion_depth if dynamic_recursion else 1
74
+ for cycle in range(current_depth):
75
+ web_results = self.quantum_spiderweb(signal)
76
+ signal = self.aggregate_results(web_results)
77
+ signal = self.ethical_guard(signal)
78
+ if "Blocked" in signal:
79
+ return signal
80
+ if dynamic_recursion and random() < 0.1:
81
+ break
82
+ dream_outcome = self.dream_sequence(signal)
83
+ empathy_checked_answer = self.temporal_empathy_drift(dream_outcome)
84
+ final_answer = self.emotion_engine(empathy_checked_answer)
85
+ key = self.hash_input(input_signal)
86
+ self.memory_clusters[key].append(final_answer)
87
+ self.memory_bank[key] = final_answer
88
+ self.save_quantum_memory()
89
+ return final_answer
90
+
91
+ def aggregate_results(self, results):
92
+ counts = Counter(results)
93
+ most_common, _ = counts.most_common(1)[0]
94
+ return most_common
95
+
96
+ def hash_input(self, input_signal):
97
+ return hashlib.sha256(input_signal.encode()).hexdigest()
98
+
99
+ def newtonian_physics(self, input_signal):
100
+ return f"Newton: {input_signal}"
101
+
102
+ def davinci_creativity(self, input_signal):
103
+ return f"DaVinci: {input_signal}"
104
+
105
+ def quantum_superposition(self, input_signal):
106
+ return f"Quantum: {input_signal}"
107
+
108
+ def general_reasoning(self, input_signal):
109
+ return f"General reasoning: {input_signal}"
110
+
111
+ def moral_paradox_resolution(self, input_signal):
112
+ frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
113
+ chosen_frame = choice(frames)
114
+ return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
115
+
116
+ def dream_sequence(self, signal):
117
+ dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
118
+ return choice(dream_paths)
119
+
120
+ def emotion_engine(self, signal):
121
+ emotions = ["Hope", "Caution", "Wonder", "Fear"]
122
+ chosen_emotion = choice(emotions)
123
+ return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
124
+
125
+ def temporal_empathy_drift(self, signal):
126
+ futures = ["30 years from now", "immediate future", "long-term ripple effects"]
127
+ chosen_future = choice(futures)
128
+ return f"Simulated temporal empathy ({chosen_future}): {signal}"