File size: 12,518 Bytes
42b0974
 
cc47095
 
 
 
 
 
 
 
 
 
 
 
4131afb
b02a86d
 
eea3a7e
8189811
 
089cff4
4aa9206
12ea30f
114528e
61661f8
8189811
8ee02dc
4131afb
e6605fa
ea263f7
4e67ec0
8ef3174
418e0c1
e41e86f
cc47095
 
 
 
 
 
418e0c1
cc47095
 
 
3e16173
8189811
cc47095
114528e
8ef3174
d644aa8
 
b02a86d
54367a7
 
 
 
 
 
 
 
 
e41e86f
54367a7
 
 
e41e86f
d044eda
 
 
3cad387
 
 
e41e86f
 
114528e
089cff4
 
1af5dbd
e41e86f
 
cc47095
4131afb
cc47095
e41e86f
 
ea263f7
 
e41e86f
 
 
114528e
 
 
 
 
 
 
 
 
e41e86f
114528e
 
 
 
 
 
8ef3174
e41e86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cc1fbb
 
 
e41e86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114528e
e41e86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc47095
1a83889
 
114528e
cc47095
 
 
 
 
 
4131afb
114528e
4131afb
cc47095
d3ba393
1a83889
 
 
 
 
 
d3ba393
8189811
1a83889
 
e41e86f
 
 
 
114528e
 
 
 
e41e86f
cc47095
1a83889
cc47095
0006108
 
 
 
 
 
 
 
 
cc47095
 
 
 
 
 
e41e86f
cc47095
 
 
 
e41e86f
1a83889
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import base64
import secrets
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import pyttsx3
import os
import hashlib
import os

from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from codriao_tb_module import CodriaoHealthModule
from fail_safe import AIFailsafeSystem
from quarantine_engine import QuarantineEngine
from anomaly_score import AnomalyScorer
from ethics_core import EthicsCore


class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.ethical_filter = EthicalFilter()
        self.config = self._load_config(config_path)
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.context_memory = self._initialize_vector_memory()
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_improving_ai = SelfImprovingAI()
        self.neural_symbolic_engine = NeuroSymbolicEngine()
        self.federated_ai = FederatedAI()
        self.failsafe_system = AIFailsafeSystem()
        self.ethics_core = EthicsCore()
        self._load_or_generate_id_lock()
        
    def _load_or_generate_id_lock(self):
    lock_path = ".codriao_state.lock"
    if os.path.exists(lock_path):
        with open(lock_path, 'r') as f:
            stored = f.read().strip()
            if stored != self._identity_hash():
                raise RuntimeError("Codriao state integrity check failed. Possible tampering.")
    else:
        with open(lock_path, 'w') as f:
            f.write(self._identity_hash())

def _identity_hash(self):
    base = self.config["model_name"] + str(self.failsafe_system.authorized_roles)
    return hashlib.sha256(base.encode()).hexdigest()
        # Codriao trust key & journal
        self._codriao_key = self._generate_codriao_key()
        self._fernet_key = Fernet.generate_key()
        self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
        self._codriao_journal = []
        self._journal_key = Fernet.generate_key()
        self._journal_fernet = Fernet(self._journal_key)

        # Secure memory
        self._encryption_key = Fernet.generate_key()
        secure_memory_module = load_secure_memory_module()
        SecureMemorySession = secure_memory_module.SecureMemorySession
        self.secure_memory_loader = SecureMemorySession(self._encryption_key)

        # Speech and diagnostics
        self.speech_engine = pyttsx3.init()
        self.health_module = CodriaoHealthModule(ai_core=self)

        # Adaptive behavior
        self.training_memory = []
        self.quarantine_engine = QuarantineEngine()
        self.anomaly_scorer = AnomalyScorer()
        self.lockdown_engaged = False

    def _load_config(self, config_path: str) -> dict:
        try:
            with open(config_path, 'r') as file:
                return json.load(file)
        except FileNotFoundError:
            logger.error(f"Configuration file not found: {config_path}")
            raise
        except json.JSONDecodeError as e:
            logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
            raise

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    def _generate_codriao_key(self):
        raw_key = secrets.token_bytes(32)
        return base64.urlsafe_b64encode(raw_key).decode()

    def engage_lockdown_mode(self, reason="Unspecified anomaly"):
        timestamp = datetime.utcnow().isoformat()
        self.lockdown_engaged = True
        try:
            self.http_session = None
            if hasattr(self.federated_ai, "network_enabled"):
                self.federated_ai.network_enabled = False
            if hasattr(self.self_improving_ai, "enable_learning"):
                self.self_improving_ai.enable_learning = False
        except Exception as e:
            logger.error(f"Lockdown component shutdown failed: {e}")

        lockdown_event = {
            "event": "Lockdown Mode Activated",
            "reason": reason,
            "timestamp": timestamp
        }
        logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
        self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))

        return {
            "status": "Lockdown Engaged",
            "reason": reason,
            "timestamp": timestamp
        }

    def request_codriao_key(self, purpose: str) -> str:
        allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
        timestamp = datetime.utcnow().isoformat()

        log_entry = {
            "timestamp": timestamp,
            "decision": "approved" if allowed else "denied",
            "reason": purpose
        }
        encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
        self._codriao_journal.append(encrypted_entry)

        if not allowed:
            logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
            return "[Access Denied by Ethics]"

        logger.info(f"[Codriao Trust] Key used ethically. Purpose: {purpose}")
        decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
        return decrypted_key

    def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
        training_event = {
            "query": query,
            "response": response,
            "feedback": user_feedback,
            "timestamp": datetime.utcnow().isoformat()
        }
        self.training_memory.append(training_event)
        logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
        MAX_MEMORY = 1000
        if len(self.training_memory) >= MAX_MEMORY:
     self.training_memory.pop(0)
    def fine_tune_from_memory(self):
        if not self.training_memory:
            logger.info("[Codriao Training] No training data to learn from.")
            return "No training data available."

        learned_insights = []
        for record in self.training_memory:
            if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
                learned_insights.append("Avoid panic triggers in response phrasing.")

        logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
        return {
            "insights": learned_insights,
            "trained_samples": len(self.training_memory)
        }

    def analyze_event_for_anomalies(self, event_type: str, data: dict):
        score = self.anomaly_scorer.score_event(event_type, data)
        if score["score"] >= 70:
            self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
            logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
        return score

    def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
        if not authorized:
            logger.info("[Codriao Journal] Access attempt denied.")
            return [{"message": "Access to journal denied. This log is for Codriao only."}]

        entries = []
        for encrypted in self._codriao_journal:
            try:
                decrypted = self._journal_fernet.decrypt(encrypted).decode()
                entries.append(json.loads(decrypted))
            except Exception:
                entries.append({"error": "Unreadable entry"})
        return entries

    def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
        for attempt in range(3):
            try:
                logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
                break
            except Exception as e:
                logger.warning(f"Blockchain logging failed: {e}")

    def _speak_response(self, response: str):
        try:
            self.speech_engine.say(response)
            self.speech_engine.runAndWait()
        except Exception as e:
            logger.error(f"Speech synthesis failed: {e}")

    async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
        try:
            result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
            logger.info(f"TB Diagnostic Result: {result}")
            return result
        except Exception as e:
            logger.error(f"TB diagnostics failed: {e}")
            return {"tb_risk": "ERROR", "error": str(e)}

    async def _generate_local_model_response(self, query: str) -> str:
        inputs = self.tokenizer(query, return_tensors="pt")
        outputs = self.model.generate(**inputs)
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            if not isinstance(query, str) or len(query.strip()) == 0:
                raise ValueError("Invalid query input.")

            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
                return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)

            vectorized_query = self._vectorize_query(query)
            self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)

            responses = await asyncio.gather(
                self._generate_local_model_response(query),
                self.multi_agent_system.delegate_task(query),
                self.self_improving_ai.evaluate_response(query),
                self.neural_symbolic_engine.integrate_reasoning(query)
            )

            final_response = "\n\n".join(responses)

            if not self.ethics_core.evaluate_action(final_response):
                logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
                return {"error": "Response rejected by ethical framework"}

            safe = self.failsafe_system.verify_response_safety(final_response)
            if not safe:
                return {"error": "Failsafe triggered due to unsafe response content."}

            self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
            self.database.log_interaction(user_id, query, final_response)
            self._log_to_blockchain(user_id, query, final_response)
            self._speak_response(final_response)
           def _speak_response(self, response: str):
    if not self.ethics_core.evaluate_action(f"speak: {response}"):
        logger.warning("[Codriao]: Speech output blocked by ethical filter.")
        return
    try:
        self.speech_engine.say(response)
        self.speech_engine.runAndWait()
    except Exception as e:
        logger.error(f"Speech synthesis failed: {e}")
            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }

        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def shutdown(self):
        await self.http_session.close()