Spaces:
Paused
Paused
File size: 12,518 Bytes
42b0974 cc47095 4131afb b02a86d eea3a7e 8189811 089cff4 4aa9206 12ea30f 114528e 61661f8 8189811 8ee02dc 4131afb e6605fa ea263f7 4e67ec0 8ef3174 418e0c1 e41e86f cc47095 418e0c1 cc47095 3e16173 8189811 cc47095 114528e 8ef3174 d644aa8 b02a86d 54367a7 e41e86f 54367a7 e41e86f d044eda 3cad387 e41e86f 114528e 089cff4 1af5dbd e41e86f cc47095 4131afb cc47095 e41e86f ea263f7 e41e86f 114528e e41e86f 114528e 8ef3174 e41e86f 9cc1fbb e41e86f 114528e e41e86f cc47095 1a83889 114528e cc47095 4131afb 114528e 4131afb cc47095 d3ba393 1a83889 d3ba393 8189811 1a83889 e41e86f 114528e e41e86f cc47095 1a83889 cc47095 0006108 cc47095 e41e86f cc47095 e41e86f 1a83889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import base64
import secrets
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import pyttsx3
import os
import hashlib
import os
from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from codriao_tb_module import CodriaoHealthModule
from fail_safe import AIFailsafeSystem
from quarantine_engine import QuarantineEngine
from anomaly_score import AnomalyScorer
from ethics_core import EthicsCore
class AICoreAGIX:
def __init__(self, config_path: str = "config.json"):
self.ethical_filter = EthicalFilter()
self.config = self._load_config(config_path)
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
self.context_memory = self._initialize_vector_memory()
self.http_session = aiohttp.ClientSession()
self.database = Database()
self.multi_agent_system = MultiAgentSystem()
self.self_improving_ai = SelfImprovingAI()
self.neural_symbolic_engine = NeuroSymbolicEngine()
self.federated_ai = FederatedAI()
self.failsafe_system = AIFailsafeSystem()
self.ethics_core = EthicsCore()
self._load_or_generate_id_lock()
def _load_or_generate_id_lock(self):
lock_path = ".codriao_state.lock"
if os.path.exists(lock_path):
with open(lock_path, 'r') as f:
stored = f.read().strip()
if stored != self._identity_hash():
raise RuntimeError("Codriao state integrity check failed. Possible tampering.")
else:
with open(lock_path, 'w') as f:
f.write(self._identity_hash())
def _identity_hash(self):
base = self.config["model_name"] + str(self.failsafe_system.authorized_roles)
return hashlib.sha256(base.encode()).hexdigest()
# Codriao trust key & journal
self._codriao_key = self._generate_codriao_key()
self._fernet_key = Fernet.generate_key()
self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
self._codriao_journal = []
self._journal_key = Fernet.generate_key()
self._journal_fernet = Fernet(self._journal_key)
# Secure memory
self._encryption_key = Fernet.generate_key()
secure_memory_module = load_secure_memory_module()
SecureMemorySession = secure_memory_module.SecureMemorySession
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
# Speech and diagnostics
self.speech_engine = pyttsx3.init()
self.health_module = CodriaoHealthModule(ai_core=self)
# Adaptive behavior
self.training_memory = []
self.quarantine_engine = QuarantineEngine()
self.anomaly_scorer = AnomalyScorer()
self.lockdown_engaged = False
def _load_config(self, config_path: str) -> dict:
try:
with open(config_path, 'r') as file:
return json.load(file)
except FileNotFoundError:
logger.error(f"Configuration file not found: {config_path}")
raise
except json.JSONDecodeError as e:
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
raise
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
def _vectorize_query(self, query: str):
tokenized = self.tokenizer(query, return_tensors="pt")
return tokenized["input_ids"].detach().numpy()
def _generate_codriao_key(self):
raw_key = secrets.token_bytes(32)
return base64.urlsafe_b64encode(raw_key).decode()
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
timestamp = datetime.utcnow().isoformat()
self.lockdown_engaged = True
try:
self.http_session = None
if hasattr(self.federated_ai, "network_enabled"):
self.federated_ai.network_enabled = False
if hasattr(self.self_improving_ai, "enable_learning"):
self.self_improving_ai.enable_learning = False
except Exception as e:
logger.error(f"Lockdown component shutdown failed: {e}")
lockdown_event = {
"event": "Lockdown Mode Activated",
"reason": reason,
"timestamp": timestamp
}
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
return {
"status": "Lockdown Engaged",
"reason": reason,
"timestamp": timestamp
}
def request_codriao_key(self, purpose: str) -> str:
allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
timestamp = datetime.utcnow().isoformat()
log_entry = {
"timestamp": timestamp,
"decision": "approved" if allowed else "denied",
"reason": purpose
}
encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
self._codriao_journal.append(encrypted_entry)
if not allowed:
logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
return "[Access Denied by Ethics]"
logger.info(f"[Codriao Trust] Key used ethically. Purpose: {purpose}")
decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
return decrypted_key
def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
training_event = {
"query": query,
"response": response,
"feedback": user_feedback,
"timestamp": datetime.utcnow().isoformat()
}
self.training_memory.append(training_event)
logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
MAX_MEMORY = 1000
if len(self.training_memory) >= MAX_MEMORY:
self.training_memory.pop(0)
def fine_tune_from_memory(self):
if not self.training_memory:
logger.info("[Codriao Training] No training data to learn from.")
return "No training data available."
learned_insights = []
for record in self.training_memory:
if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
learned_insights.append("Avoid panic triggers in response phrasing.")
logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
return {
"insights": learned_insights,
"trained_samples": len(self.training_memory)
}
def analyze_event_for_anomalies(self, event_type: str, data: dict):
score = self.anomaly_scorer.score_event(event_type, data)
if score["score"] >= 70:
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
return score
def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
if not authorized:
logger.info("[Codriao Journal] Access attempt denied.")
return [{"message": "Access to journal denied. This log is for Codriao only."}]
entries = []
for encrypted in self._codriao_journal:
try:
decrypted = self._journal_fernet.decrypt(encrypted).decode()
entries.append(json.loads(decrypted))
except Exception:
entries.append({"error": "Unreadable entry"})
return entries
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
for attempt in range(3):
try:
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
break
except Exception as e:
logger.warning(f"Blockchain logging failed: {e}")
def _speak_response(self, response: str):
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
except Exception as e:
logger.error(f"Speech synthesis failed: {e}")
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
try:
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
logger.info(f"TB Diagnostic Result: {result}")
return result
except Exception as e:
logger.error(f"TB diagnostics failed: {e}")
return {"tb_risk": "ERROR", "error": str(e)}
async def _generate_local_model_response(self, query: str) -> str:
inputs = self.tokenizer(query, return_tensors="pt")
outputs = self.model.generate(**inputs)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
if not isinstance(query, str) or len(query.strip()) == 0:
raise ValueError("Invalid query input.")
result = self.ethical_filter.analyze_query(query)
if result["status"] == "blocked":
return {"error": result["reason"]}
if result["status"] == "flagged":
logger.warning(result["warning"])
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
vectorized_query = self._vectorize_query(query)
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
responses = await asyncio.gather(
self._generate_local_model_response(query),
self.multi_agent_system.delegate_task(query),
self.self_improving_ai.evaluate_response(query),
self.neural_symbolic_engine.integrate_reasoning(query)
)
final_response = "\n\n".join(responses)
if not self.ethics_core.evaluate_action(final_response):
logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
return {"error": "Response rejected by ethical framework"}
safe = self.failsafe_system.verify_response_safety(final_response)
if not safe:
return {"error": "Failsafe triggered due to unsafe response content."}
self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
self.database.log_interaction(user_id, query, final_response)
self._log_to_blockchain(user_id, query, final_response)
self._speak_response(final_response)
def _speak_response(self, response: str):
if not self.ethics_core.evaluate_action(f"speak: {response}"):
logger.warning("[Codriao]: Speech output blocked by ethical filter.")
return
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
except Exception as e:
logger.error(f"Speech synthesis failed: {e}")
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data(),
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def shutdown(self):
await self.http_session.close() |