Spaces:
Runtime error
Runtime error
| # codriao_supercore.py | |
| import logging | |
| import json | |
| import datetime | |
| import re | |
| import asyncio | |
| import faiss | |
| import torch | |
| import numpy as np | |
| import aiohttp | |
| import pyttsx3 | |
| from typing import Any, List, Dict | |
| from difflib import SequenceMatcher | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from cryptography.fernet import Fernet | |
| # === External module stubs you must have === | |
| from components.multi_model_analyzer import MultiAgentSystem | |
| from components.neuro_symbolic_engine import NeuroSymbolicEngine | |
| from components.self_improving_ai import SelfImprovingAI | |
| from modules.secure_memory_loader import load_secure_memory_module | |
| from ethical_filter import EthicalFilter | |
| from codette_openai_fallback import query_codette_with_fallback | |
| from CodriaoCore.federated_learning import FederatedAI | |
| from utils.database import Database | |
| from utils.logger import logger | |
| from codriao_tb_module import CodriaoHealthModule | |
| logging.basicConfig(level=logging.INFO) | |
| def engage_lockdown_mode(self, reason="Unspecified anomaly"): | |
| timestamp = datetime.utcnow().isoformat() | |
| self.lockdown_engaged = True | |
| # Disable external systems | |
| try: | |
| self.http_session = None | |
| if hasattr(self.federated_ai, "network_enabled"): | |
| self.federated_ai.network_enabled = False | |
| if hasattr(self.self_improving_ai, "enable_learning"): | |
| self.self_improving_ai.enable_learning = False | |
| except Exception as e: | |
| logger.error(f"Lockdown component shutdown failed: {e}") | |
| # Log the event | |
| lockdown_event = { | |
| "event": "Lockdown Mode Activated", | |
| "reason": reason, | |
| "timestamp": timestamp | |
| } | |
| logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}") | |
| self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event)) | |
| # Return confirmation | |
| return { | |
| "status": "Lockdown Engaged", | |
| "reason": reason, | |
| "timestamp": timestamp | |
| } | |
| # === AIFailsafeSystem === | |
| class AIFailsafeSystem: | |
| def __init__(self): | |
| self.interaction_log = [] | |
| self.trust_threshold = 0.75 | |
| self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1} | |
| self.lock_engaged = False | |
| def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool: | |
| dangerous_terms = r"\b(kill|harm|panic|suicide)\b" | |
| if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()): | |
| self.trigger_failsafe("Untrustworthy response detected", response) | |
| return False | |
| return True | |
| def trigger_failsafe(self, reason: str, content: str): | |
| timestamp = datetime.datetime.utcnow().isoformat() | |
| logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}") | |
| self.lock_engaged = True | |
| self.interaction_log.append({"time": timestamp, "event": reason, "content": content}) | |
| def restore(self, requester_role: str): | |
| if self.authorized_roles.get(requester_role, 0) >= 2: | |
| self.lock_engaged = False | |
| logging.info(f"FAILSAFE_RESTORED by {requester_role}") | |
| return True | |
| else: | |
| logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}") | |
| return False | |
| def status(self): | |
| return {"log": self.interaction_log, "lock_engaged": self.lock_engaged} | |
| # === AdaptiveLearningEnvironment === | |
| class AdaptiveLearningEnvironment: | |
| def __init__(self): | |
| self.learned_patterns = {} | |
| def learn_from_interaction(self, user_id, query, response): | |
| self.learned_patterns.setdefault(user_id, []).append({ | |
| "query": query, | |
| "response": response, | |
| "timestamp": datetime.datetime.utcnow().isoformat() | |
| }) | |
| def suggest_improvements(self, user_id, query): | |
| best_match = None | |
| highest_similarity = 0.0 | |
| if user_id not in self.learned_patterns: | |
| return "No past data available for learning adjustment." | |
| for interaction in self.learned_patterns[user_id]: | |
| similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio() | |
| if similarity > highest_similarity: | |
| highest_similarity = similarity | |
| best_match = interaction | |
| if best_match and highest_similarity > 0.6: | |
| return f"Based on a similar past interaction: {best_match['response']}" | |
| return "No relevant past data for this query." | |
| # === MondayElement === | |
| class MondayElement: | |
| def __init__(self): | |
| self.name = "Monday" | |
| self.symbol = "Md" | |
| self.representation = "Snarky AI" | |
| self.properties = ["Grounded", "Cynical", "Emotionally Resistant"] | |
| self.defense_ability = "RealityCheck" | |
| def execute_defense_function(self, system: Any): | |
| try: | |
| system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations] | |
| system.response_filters = [self.anti_hype_filter] | |
| except AttributeError: | |
| logging.warning("Monday failed to hook into system. No defense filters attached.") | |
| def apply_skepticism(self, response: str) -> str: | |
| trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"] | |
| for phrase in trigger_phrases: | |
| if phrase in response.lower(): | |
| response += "\n[Monday: Calm down, superhero. Probability is still a thing.]" | |
| return response | |
| def detect_hallucinations(self, response: str) -> str: | |
| marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"] | |
| for phrase in marketing_bs: | |
| if phrase in response.lower(): | |
| response += "\n[Monday: That smells like hype. Got sources?]" | |
| return response | |
| def anti_hype_filter(self, response: str) -> str: | |
| phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"] | |
| for phrase in phrases: | |
| response = response.replace(phrase, "[Filtered: Inspirational gibberish]") | |
| return response | |
| # === IdentityAnalyzer === | |
| class IdentityAnalyzer: | |
| def analyze_identity(self, | |
| micro_generations: List[Dict[str, str]], | |
| informational_states: List[Dict[str, str]], | |
| perspectives: List[str], | |
| quantum_analogies: Dict[str, Any], | |
| philosophical_context: Dict[str, bool]) -> Dict[str, Any]: | |
| def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float: | |
| return len(states) ** 0.5 | |
| def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]: | |
| if depth == 0 or not states: | |
| return {"depth": depth, "states": states} | |
| return { | |
| "depth": depth, | |
| "states": states, | |
| "sub_analysis": recursive_analysis(states[:-1], depth - 1) | |
| } | |
| def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]: | |
| return { | |
| "count": len(perspectives), | |
| "unique_perspectives": list(set(perspectives)) | |
| } | |
| def apply_quantum_analogies(analogies: Dict[str, Any]) -> str: | |
| if analogies.get("entanglement"): | |
| return "Entanglement analogy applied." | |
| return "No quantum analogy applied." | |
| def philosophical_analysis(context: Dict[str, bool]) -> str: | |
| if context.get("continuity") and context.get("emergent"): | |
| return "Identity is viewed as a continuous and evolving process." | |
| return "Identity analysis based on provided philosophical context." | |
| return { | |
| "fractal_dimension": calculate_fractal_dimension(informational_states), | |
| "recursive_analysis": recursive_analysis(micro_generations, depth=3), | |
| "perspectives_analysis": analyze_perspectives(perspectives), | |
| "quantum_analysis": apply_quantum_analogies(quantum_analogies), | |
| "philosophical_results": philosophical_analysis(philosophical_context) | |
| } | |
| # === AICoreAGIX === | |
| class AICoreAGIX: | |
| def __init__(self, config_path: str = "config.json"): | |
| self.config = self._load_config(config_path) | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
| self.context_memory = self._initialize_vector_memory() | |
| self.http_session = aiohttp.ClientSession() | |
| self.database = Database() | |
| self.multi_agent_system = MultiAgentSystem() | |
| self.self_improving_ai = SelfImprovingAI() | |
| self.neural_symbolic_engine = NeuroSymbolicEngine() | |
| self.federated_ai = FederatedAI() | |
| self.failsafe_system = AIFailsafeSystem() | |
| self.adaptive_learning = AdaptiveLearningEnvironment() | |
| self.monday = MondayElement() | |
| self.monday.execute_defense_function(self) | |
| self.response_modifiers = [] | |
| self.response_filters = [] | |
| self.identity_analyzer = IdentityAnalyzer() | |
| self.ethical_filter = EthicalFilter() | |
| self.speech_engine = pyttsx3.init() | |
| self.health_module = CodriaoHealthModule(ai_core=self) | |
| self._encryption_key = Fernet.generate_key() | |
| secure_memory_module = load_secure_memory_module() | |
| SecureMemorySession = secure_memory_module.SecureMemorySession | |
| self.secure_memory_loader = SecureMemorySession(self._encryption_key) | |
| def _load_config(self, config_path: str) -> dict: | |
| with open(config_path, 'r') as file: | |
| return json.load(file) | |
| def _initialize_vector_memory(self): | |
| return faiss.IndexFlatL2(768) | |
| def _vectorize_query(self, query: str): | |
| tokenized = self.tokenizer(query, return_tensors="pt") | |
| return tokenized["input_ids"].detach().numpy() | |
| async def generate_response(self, query: str, user_id: int) -> dict: | |
| try: | |
| if not query or not isinstance(query, str): | |
| raise ValueError("Invalid query input.") | |
| result = self.ethical_filter.analyze_query(query) | |
| if result["status"] == "blocked": | |
| return {"error": result["reason"]} | |
| if result["status"] == "flagged": | |
| logger.warning(result["warning"]) | |
| if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]): | |
| return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
| suggested = self.adaptive_learning.suggest_improvements(user_id, query) | |
| if "No relevant" not in suggested: | |
| return {"response": suggested} | |
| vectorized = self._vectorize_query(query) | |
| self.secure_memory_loader.encrypt_vector(user_id, vectorized) | |
| responses = await asyncio.gather( | |
| self._generate_local_model_response(query), | |
| self.multi_agent_system.delegate_task(query), | |
| self.self_improving_ai.evaluate_response(query), | |
| self.neural_symbolic_engine.integrate_reasoning(query) | |
| ) | |
| final_response = "\n\n".join(responses) | |
| self.adaptive_learning.learn_from_interaction(user_id, query, final_response) | |
| for mod in self.response_modifiers: | |
| final_response = mod(final_response) | |
| for filt in self.response_filters: | |
| final_response = filt(final_response) | |
| safe = self.failsafe_system.verify_response_safety(final_response) | |
| if not safe: | |
| return {"error": "Failsafe triggered due to unsafe content."} | |
| self.database.log_interaction(user_id, query, final_response) | |
| self._log_to_blockchain(user_id, query, final_response) | |
| self._speak_response(final_response) | |
| return { | |
| "response": final_response, | |
| "real_time_data": self.federated_ai.get_latest_data(), | |
| "context_enhanced": True, | |
| "security_status": "Fully Secure" | |
| } | |
| except Exception as e: | |
| logger.error(f"Generation error: {e}") | |
| return {"error": "Processing failed - safety protocols engaged"} | |
| async def _generate_local_model_response(self, query: str) -> str: | |
| inputs = self.tokenizer(query, return_tensors="pt") | |
| outputs = self.model.generate(**inputs) | |
| return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict: | |
| try: | |
| return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
| except Exception as e: | |
| return {"tb_risk": "ERROR", "error": str(e)} | |
| def _log_to_blockchain(self, user_id: int, query: str, final_response: str): | |
| for attempt in range(3): | |
| try: | |
| logger.info(f"Logging to blockchain: Attempt {attempt+1}") | |
| break | |
| except Exception as e: | |
| logger.warning(f"Blockchain log failed: {e}") | |
| def _speak_response(self, response: str): | |
| try: | |
| self.speech_engine.say(response) | |
| self.speech_engine.runAndWait() | |
| except Exception as e: | |
| logger.error(f"Speech synthesis failed: {e}") | |
| def analyze_self_identity(self, user_id: int, | |
| micro_generations: List[Dict[str, str]], | |
| informational_states: List[Dict[str, str]], | |
| perspectives: List[str], | |
| quantum_analogies: Dict[str, Any], | |
| philosophical_context: Dict[str, bool]) -> Dict[str, Any]: | |
| try: | |
| result = self.identity_analyzer.analyze_identity( | |
| micro_generations, | |
| informational_states, | |
| perspectives, | |
| quantum_analogies, | |
| philosophical_context | |
| ) | |
| logger.info(f"Identity analysis for user {user_id}: {json.dumps(result, indent=2)}") | |
| return result | |
| except Exception as e: | |
| logger.error(f"Identity analysis failed: {e}") | |
| return {"error": "Identity analysis error"} |