Spaces:
Runtime error
Runtime error
| import aiohttp | |
| import json | |
| import logging | |
| import torch | |
| import faiss | |
| import numpy as np | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from typing import List, Dict, Any | |
| from cryptography.fernet import Fernet | |
| from jwt import encode, decode, ExpiredSignatureError | |
| from datetime import datetime, timedelta | |
| #blockchain_module | |
| import speech_recognition as sr | |
| import pyttsx3 | |
| import os | |
| from CodriaoCore.multi_agent import MultiAgentSystem | |
| from CodriaoCore.ar_integration import ARDataOverlay | |
| from CodriaoCore.neural_symbolic import NeuralSymbolicProcessor | |
| from CodriaoCore.federated_learning import FederatedAI | |
| from database import Database | |
| from logger import logger | |
| from secure_memory import SecureMemorySession | |
| from codriao_tb_module import CodriaoHealthModule | |
| class AICoreAGIX: | |
| def __init__(self, config_path: str = "config.json"): | |
| self.ethical_filter = EthicalFilter() | |
| self.config = self._load_config(config_path) | |
| self.models = self._initialize_models() | |
| self.context_memory = self._initialize_vector_memory() | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
| self.http_session = aiohttp.ClientSession() | |
| self.database = Database() | |
| self.multi_agent_system = MultiAgentSystem() | |
| self.self_reflective_ai = SelfReflectiveAI() | |
| self.ar_overlay = ARDataOverlay() | |
| self.neural_symbolic_processor = NeuralSymbolicProcessor() | |
| self.federated_ai = FederatedAI() | |
| # Security + Memory | |
| key = os.environ.get("CODRIAO_SECRET_KEY").encode() | |
| self._encryption_key = key | |
| self.secure_memory = SecureMemorySession(self._encryption_key) | |
| self.speech_engine = pyttsx3.init() | |
| self.health_module = CodriaoHealthModule(ai_core=self) | |
| async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
| try: | |
| # Ethical Safety Check | |
| result = self.ethical_filter.analyze_query(query) | |
| if result["status"] == "blocked": | |
| return {"error": result["reason"]} | |
| if result["status"] == "flagged": | |
| logger.warning(result["warning"]) | |
| # Check if user explicitly requests TB analysis | |
| if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]): | |
| result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
| return { | |
| "response": result["ethical_analysis"], | |
| "explanation": result["explanation"], | |
| "tb_risk": result["tb_risk"], | |
| "image_analysis": result["image_analysis"], | |
| "audio_analysis": result["audio_analysis"], | |
| "system_health": result["system_health"] | |
| } | |
| # Vectorize and encrypt | |
| vectorized_query = self._vectorize_query(query) | |
| self.secure_memory.encrypt_vector(user_id, vectorized_query) | |
| # (Optional) retrieve memory | |
| user_vectors = self.secure_memory.decrypt_vectors(user_id) | |
| # Main AI processing | |
| model_response = await self._generate_local_model_response(query) | |
| agent_response = self.multi_agent_system.delegate_task(query) | |
| self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) | |
| ar_data = self.ar_overlay.fetch_augmented_data(query) | |
| neural_reasoning = self.neural_symbolic_processor.process_query(query) | |
| final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}" | |
| self.database.log_interaction(user_id, query, final_response) | |
| #blockchain_module.store_interaction(user_id, query, final_response) | |
| self._speak_response(final_response) | |
| return { | |
| "response": final_response, | |
| "real_time_data": self.federated_ai.get_latest_data(), | |
| "context_enhanced": True, | |
| "security_status": "Fully Secure" | |
| } | |
| except Exception as e: | |
| logger.error(f"Response generation failed: {e}") | |
| return {"error": "Processing failed - safety protocols engaged"} | |
| async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]: | |
| """Only runs TB analysis if explicitly requested.""" | |
| try: | |
| result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
| logger.info(f"TB Diagnostic Result: {result}") | |
| return result | |
| except Exception as e: | |
| logger.error(f"TB diagnostics failed: {e}") | |
| return { | |
| "tb_risk": "ERROR", | |
| "error": str(e), | |
| "image_analysis": {}, | |
| "audio_analysis": {}, | |
| "ethical_analysis": "Unable to complete TB diagnostic.", | |
| "explanation": None, | |
| "system_health": None | |
| } | |
| def _load_config(self, config_path: str) -> dict: | |
| with open(config_path, 'r') as file: | |
| return json.load(file) | |
| def _initialize_models(self): | |
| return { | |
| "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), | |
| "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| } | |
| def _initialize_vector_memory(self): | |
| return faiss.IndexFlatL2(768) | |
| def _vectorize_query(self, query: str): | |
| tokenized = self.tokenizer(query, return_tensors="pt") | |
| return tokenized["input_ids"].detach().numpy() | |
| async def _generate_local_model_response(self, query: str) -> str: | |
| inputs = self.tokenizer(query, return_tensors="pt") | |
| outputs = self.model.generate(**inputs) | |
| return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| def _speak_response(self, response: str): | |
| self.speech_engine.say(response) | |
| self.speech_engine.runAndWait() |