Spaces:
Runtime error
Runtime error
| import asyncio | |
| import logging | |
| from ai_system.ai_core import AICore | |
| from tb_image_processor import TBImageProcessor | |
| from tb_audio_processor import TBAudioProcessor | |
| logger = logging.getLogger(__name__) | |
| class CodriaoHealthModule: | |
| """Embedded compassionate TB detection within Codriao's architecture""" | |
| def __init__(self, ai_core: AICore): | |
| self.ai_core = ai_core | |
| self.image_processor = TBImageProcessor() | |
| self.audio_processor = TBAudioProcessor() | |
| async def evaluate_tb_risk(self, image_path: str, audio_path: str, user_id: int): | |
| image_result, image_confidence = self.image_processor.process_image(image_path) | |
| audio_result, audio_confidence = self.audio_processor.process_audio(audio_path) | |
| if "Error" in [image_result, audio_result]: | |
| tb_risk = "UNKNOWN" | |
| elif image_result == "TB Detected" and audio_result == "TB Detected": | |
| tb_risk = "HIGH" | |
| elif image_result == "TB Detected" or audio_result == "TB Detected": | |
| tb_risk = "MEDIUM" | |
| else: | |
| tb_risk = "LOW" | |
| combined_query = ( | |
| f"Medical Analysis Input: TB image: {image_result} (confidence {image_confidence:.2f}), " | |
| f"Audio: {audio_result} (confidence {audio_confidence:.2f}). Risk Level: {tb_risk}. " | |
| f"Please respond with a kind, ethical interpretation and recommended next steps." | |
| ) | |
| response = await self.ai_core.generate_response(combined_query, user_id) | |
| return { | |
| "tb_risk": tb_risk, | |
| "image_analysis": {"result": image_result, "confidence": image_confidence}, | |
| "audio_analysis": {"result": audio_result, "confidence": audio_confidence}, | |
| "ethical_analysis": response.get("response"), | |
| "explanation": response.get("explanation"), | |
| "system_health": response.get("health"), | |
| } |