Spaces:
Runtime error
Runtime error
| import aiohttp | |
| import json | |
| import logging | |
| import torch | |
| import faiss | |
| import numpy as np | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from typing import List, Dict, Any | |
| from cryptography.fernet import Fernet | |
| from jwt import encode, decode, ExpiredSignatureError | |
| from datetime import datetime, timedelta | |
| import os | |
| import speech_recognition as sr | |
| import pyttsx3 | |
| from deep_translator import GoogleTranslator | |
| # Codette's legacy modules (secured) | |
| from components.adaptive_learning import AdaptiveLearningEnvironment | |
| from components.real_time_data import RealTimeDataIntegrator | |
| from components.sentiment_analysis import EnhancedSentimentAnalyzer | |
| from components.self_improving_ai import SelfImprovingAI | |
| from components.multi_model_analyzer import MultiAgentSystem | |
| # Codriao's enhanced modules | |
| from codriao_tb_module import CodriaoHealthModule | |
| from secure_memory_loader import load_secure_memory_module | |
| secure_memory_module = load_secure_memory_module() | |
| from ethical_filter import EthicalFilter | |
| from results_store import save_result | |
| class CodriaoCore: | |
| def __init__(self, config_path: str = "config.json"): | |
| self.config = self._load_config(config_path) | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
| self.models = self._initialize_models() | |
| self.context_memory = self._initialize_vector_memory() | |
| self._encryption_key = self.config["security_settings"]["encryption_key"].encode() | |
| self.jwt_secret = self.config["security_settings"]["jwt_secret"] | |
| self.http_session = aiohttp.ClientSession() | |
| self.database = Database() | |
| # Cognitive & ethical subsystems | |
| self.sentiment_analyzer = EnhancedSentimentAnalyzer() | |
| self.self_improving_ai = SelfImprovingAI() | |
| self.adaptive_learning = AdaptiveLearningEnvironment() | |
| self.data_fetcher = RealTimeDataIntegrator() | |
| self.multi_agent_system = MultiAgentSystem() | |
| self.ethical_filter = EthicalFilter() | |
| self.secure_memory = SecureMemorySession(self._encryption_key) | |
| self.speech_engine = pyttsx3.init() | |
| self.health_module = CodriaoHealthModule(ai_core=self) | |
| def _load_config(self, config_path: str) -> dict: | |
| with open(config_path, 'r') as file: | |
| return json.load(file) | |
| def _initialize_models(self): | |
| return { | |
| "base_model": self.model, | |
| "tokenizer": self.tokenizer | |
| } | |
| def _initialize_vector_memory(self): | |
| return faiss.IndexFlatL2(768) | |
| async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
| try: | |
| check = self.ethical_filter.analyze_query(query) | |
| if check["status"] == "blocked": | |
| return {"error": check["reason"]} | |
| if check["status"] == "flagged": | |
| logger.warning(check["warning"]) | |
| if any(trigger in query.lower() for trigger in ["tb check", "run tb diagnostics", "tb test"]): | |
| result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
| return result | |
| vectorized_query = self._vectorize_query(query) | |
| self.secure_memory.encrypt_vector(user_id, vectorized_query) | |
| model_response = await self._generate_local_model_response(query) | |
| agent_response = self.multi_agent_system.delegate_task(query) | |
| sentiment = self.sentiment_analyzer.detailed_analysis(query) | |
| self_reflection = self.self_improving_ai.evaluate_response(query, model_response) | |
| real_time = self.data_fetcher.fetch_latest_data() | |
| final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}" | |
| self.database.log_interaction(user_id, query, final_response) | |
| self._speak_response(final_response) | |
| return { | |
| "response": final_response, | |
| "sentiment": sentiment, | |
| "real_time_data": real_time, | |
| "security_level": self._evaluate_risk(final_response), | |
| "token_optimized": True | |
| } | |
| except Exception as e: | |
| logger.error(f"Response generation failed: {e}") | |
| return {"error": "Codriao encountered a critical reasoning issue."} | |
| async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int, language="en") -> Dict[str, Any]: | |
| result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
| result_filename = save_result(result) | |
| result["shareable_link"] = f"https://huggingface.co/spaces/Raiff1982/codriao/blob/main/results/{result_filename}" | |
| if result["tb_risk"] == "HIGH": | |
| result["next_steps"] = "β οΈ Immediate follow-up required. Please visit a healthcare provider." | |
| elif result["tb_risk"] == "MEDIUM": | |
| result["next_steps"] = "π Consider additional testing for confirmation." | |
| if language != "en": | |
| try: | |
| translated_result = GoogleTranslator(source="auto", target=language).translate(json.dumps(result)) | |
| return json.loads(translated_result) | |
| except Exception as e: | |
| result["translation_error"] = str(e) | |
| return result | |
| def _evaluate_risk(self, response: str) -> str: | |
| if "critical" in response.lower(): | |
| return "HIGH" | |
| elif "concern" in response.lower(): | |
| return "MEDIUM" | |
| else: | |
| return "LOW" | |
| def _speak_response(self, response: str): | |
| if self.config["speech_settings"]["emotion_adaptive"]: | |
| try: | |
| self.speech_engine.say(response) | |
| self.speech_engine.runAndWait() | |
| except: | |
| pass | |
| def generate_jwt(self, user_id: int): | |
| payload = { | |
| "user_id": user_id, | |
| "exp": datetime.utcnow() + timedelta(hours=1) | |
| } | |
| return encode(payload, self.jwt_secret, algorithm="HS256") | |
| def verify_jwt(self, token: str): | |
| try: | |
| return decode(token, self.jwt_secret, algorithms=["HS256"]) | |
| except ExpiredSignatureError: | |
| return None | |
| async def shutdown(self): | |
| await self.http_session.close() | |