codriao / AICoreAGIX_with_TB.py
Raiff1982's picture
Update AICoreAGIX_with_TB.py
d3ba393 verified
raw
history blame
6.38 kB
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
# blockchain_module
import speech_recognition as sr
import pyttsx3
import os
from CodriaoCore.multi_model_analyzer import MultiAgentSystem
from neuro_symbolic import NeuroSymbolicEngine # Updated import
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database # Ensure this module exports Database correctly
from logger import logger
from secure_memory_loader import SecureMemorySession
from codriao_tb_module import CodriaoHealthModule
# Ensure these modules exist or update the paths accordingly.
from ethical_filter import EthicalFilter
from self_reflective_ai import SelfReflectiveAI
class AICoreAGIX:
def __init__(self, config_path: str = "config.json"):
self.ethical_filter = EthicalFilter()
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.context_memory = self._initialize_vector_memory()
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
self.http_session = aiohttp.ClientSession()
self.database = Database()
self.multi_agent_system = MultiAgentSystem()
self.self_reflective_ai = SelfReflectiveAI()
self.neural_symbolic_engine = NeuroSymbolicEngine() # Updated instantiation
self.federated_ai = FederatedAI()
# Security + Memory
key = os.environ.get("CODRIAO_SECRET_KEY").encode()
self._encryption_key = key
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
self.speech_engine = pyttsx3.init()
self.health_module = CodriaoHealthModule(ai_core=self)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
# Ethical Safety Check
result = self.ethical_filter.analyze_query(query)
if result["status"] == "blocked":
return {"error": result["reason"]}
if result["status"] == "flagged":
logger.warning(result["warning"])
# Check if user explicitly requests TB analysis
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
return {
"response": result["ethical_analysis"],
"explanation": result["explanation"],
"tb_risk": result["tb_risk"],
"image_analysis": result["image_analysis"],
"audio_analysis": result["audio_analysis"],
"system_health": result["system_health"]
}
# Vectorize and encrypt
vectorized_query = self._vectorize_query(query)
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
# (Optional) retrieve memory
user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)
# Main AI processing
model_response = await self._generate_local_model_response(query)
agent_response = self.multi_agent_system.delegate_task(query)
self_reflection = self.self_reflective_ai.evaluate_response(query, model_response)
neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query) # Updated usage
final_response = (
f"{model_response}\n\n"
f"{agent_response}\n\n"
f"{self_reflective_ai}\n\n"
f"Logic: {neural_reasoning}"
)
self.database.log_interaction(user_id, query, final_response)
# blockchain_module.store_interaction(user_id, query, final_response)
self._speak_response(final_response)
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data(),
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
"""Only runs TB analysis if explicitly requested."""
try:
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
logger.info(f"TB Diagnostic Result: {result}")
return result
except Exception as e:
logger.error(f"TB diagnostics failed: {e}")
return {
"tb_risk": "ERROR",
"error": str(e),
"image_analysis": {},
"audio_analysis": {},
"ethical_analysis": "Unable to complete TB diagnostic.",
"explanation": None,
"system_health": None
}
def _load_config(self, config_path: str) -> dict:
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
return {
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
def _vectorize_query(self, query: str):
tokenized = self.tokenizer(query, return_tensors="pt")
return tokenized["input_ids"].detach().numpy()
async def _generate_local_model_response(self, query: str) -> str:
inputs = self.tokenizer(query, return_tensors="pt")
outputs = self.model.generate(**inputs)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def _speak_response(self, response: str):
self.speech_engine.say(response)
self.speech_engine.runAndWait()