Spaces:
Running
Running
Commit
Β·
d0df26d
1
Parent(s):
4d68b1e
app.py updated
Browse files
app.py
CHANGED
@@ -1,54 +1,53 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain_groq import ChatGroq
|
3 |
-
from langchain_community.utilities import ArxivAPIWrapper,WikipediaAPIWrapper
|
4 |
-
from langchain_community.tools import ArxivQueryRun,WikipediaQueryRun,DuckDuckGoSearchRun
|
5 |
-
from langchain.agents import initialize_agent,AgentType
|
6 |
from langchain.callbacks import StreamlitCallbackHandler
|
7 |
-
import os
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
## Code
|
10 |
-
####
|
11 |
|
12 |
-
##
|
13 |
-
arxiv_wrapper=ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
|
14 |
-
arxiv=ArxivQueryRun(api_wrapper=arxiv_wrapper)
|
15 |
|
16 |
-
|
17 |
-
wiki=WikipediaQueryRun(api_wrapper=
|
18 |
-
|
19 |
-
search=DuckDuckGoSearchRun(name="Search")
|
20 |
|
|
|
21 |
|
|
|
22 |
st.title("π LangChain - Chat with search")
|
23 |
-
"""
|
24 |
-
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
25 |
-
Try more LangChain π€ Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
26 |
-
"""
|
27 |
|
28 |
-
## Sidebar for settings
|
29 |
st.sidebar.title("Settings")
|
30 |
-
api_key=st.sidebar.text_input("Enter your Groq API Key:",type="password")
|
31 |
|
32 |
if "messages" not in st.session_state:
|
33 |
-
st.session_state["messages"]=[
|
34 |
-
{"role":"
|
35 |
]
|
36 |
|
37 |
for msg in st.session_state.messages:
|
38 |
st.chat_message(msg["role"]).write(msg['content'])
|
39 |
|
40 |
-
if prompt:=st.chat_input(placeholder="What is machine learning?"):
|
41 |
-
st.session_state.messages.append({"role":"user","content":prompt})
|
42 |
st.chat_message("user").write(prompt)
|
43 |
|
44 |
-
llm=ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True)
|
45 |
-
tools=[search,arxiv,wiki]
|
46 |
|
47 |
-
search_agent=initialize_agent(
|
|
|
|
|
48 |
|
49 |
with st.chat_message("assistant"):
|
50 |
-
st_cb=StreamlitCallbackHandler(st.container(),expand_new_thoughts=False)
|
51 |
-
|
52 |
-
st.session_state.messages.append({'role':'assistant',"content":response})
|
53 |
-
st.write(response)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from langchain_groq import ChatGroq
|
3 |
+
from langchain_community.utilities import ArxivAPIWrapper, WikipediaAPIWrapper
|
4 |
+
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
|
5 |
+
from langchain.agents import initialize_agent, AgentType
|
6 |
from langchain.callbacks import StreamlitCallbackHandler
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
## Initialize Tools
|
9 |
+
arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
|
10 |
+
arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper)
|
11 |
|
12 |
+
wiki_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200)
|
13 |
+
wiki = WikipediaQueryRun(api_wrapper=wiki_wrapper)
|
|
|
|
|
14 |
|
15 |
+
search = DuckDuckGoSearchRun(name="Search")
|
16 |
|
17 |
+
## Streamlit UI
|
18 |
st.title("π LangChain - Chat with search")
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
st.sidebar.title("Settings")
|
21 |
+
api_key = st.sidebar.text_input("Enter your Groq API Key:", type="password")
|
22 |
|
23 |
if "messages" not in st.session_state:
|
24 |
+
st.session_state["messages"] = [
|
25 |
+
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
26 |
]
|
27 |
|
28 |
for msg in st.session_state.messages:
|
29 |
st.chat_message(msg["role"]).write(msg['content'])
|
30 |
|
31 |
+
if prompt := st.chat_input(placeholder="What is machine learning?"):
|
32 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
33 |
st.chat_message("user").write(prompt)
|
34 |
|
35 |
+
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
|
36 |
+
tools = [search, arxiv, wiki]
|
37 |
|
38 |
+
search_agent = initialize_agent(
|
39 |
+
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True
|
40 |
+
)
|
41 |
|
42 |
with st.chat_message("assistant"):
|
43 |
+
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
44 |
+
user_query = st.session_state.messages[-1]["content"]
|
|
|
|
|
45 |
|
46 |
+
try:
|
47 |
+
response = search_agent.run(user_query, callbacks=[st_cb])
|
48 |
+
response = response if response else "Sorry, I couldn't find any relevant information."
|
49 |
+
except Exception as e:
|
50 |
+
response = f"An error occurred: {str(e)}"
|
51 |
+
|
52 |
+
st.session_state.messages.append({'role': 'assistant', "content": response})
|
53 |
+
st.write(response)
|