File size: 5,447 Bytes
cd10cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9792d
 
cd10cf2
 
 
9a9792d
cd10cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48bf14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9792d
cd10cf2
 
 
 
 
 
9a9792d
cd10cf2
 
 
 
 
 
a48bf14
cd10cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911dce3
cd10cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import data
import torch
import gradio as gr
from models import imagebind_model
from models.imagebind_model import ModalityType


device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)


def image_text_zeroshot(image, text_list):
    image_paths = [image]
    labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
    inputs = {
        ModalityType.TEXT: data.load_and_transform_text(labels, device),
        ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    }

    with torch.no_grad():
        embeddings = model(inputs)

    scores = (
        torch.softmax(
            embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1
        )
        .squeeze(0)
        .tolist()
    )

    score_dict = {label: score for label, score in zip(labels, scores)}

    return score_dict


def audio_text_zeroshot(audio, text_list):
    audio_paths = [audio]
    labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
    inputs = {
        ModalityType.TEXT: data.load_and_transform_text(labels, device),
        ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
    }

    with torch.no_grad():
        embeddings = model(inputs)

    scores = (
        torch.softmax(
            embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1
        )
        .squeeze(0)
        .tolist()
    )

    score_dict = {label: score for label, score in zip(labels, scores)}

    return score_dict


def video_text_zeroshot(image, text_list):
    image_paths = [image]
    labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
    inputs = {
        ModalityType.TEXT: data.load_and_transform_text(labels, device),
        ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    }

    with torch.no_grad():
        embeddings = model(inputs)

    scores = (
        torch.softmax(
            embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1
        )
        .squeeze(0)
        .tolist()
    )

    score_dict = {label: score for label, score in zip(labels, scores)}

    return score_dict

def doubleimage_text_zeroshot(image, image2,  text_list):
    image_paths = [image]
    labels = [label.strip(" ") for label in text_list.strip(" ").split("|")]
    inputs = {
        ModalityType.TEXT: data.load_and_transform_text(labels, device),
        ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    }

    with torch.no_grad():
        embeddings = model(inputs)

    scores = (
        torch.softmax(
            embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1
        )
        .squeeze(0)
        .tolist()
    )

    score_dict = {label: score for label, score in zip(labels, scores)}

    return score_dict    

    

def inference(
    task,
    text_list=None,
    image=None,
    audio=None,
    image2=None,
):
    if task == "image-text":
        result = image_text_zeroshot(image, text_list)
    elif task == "audio-text":
        result = audio_text_zeroshot(audio, text_list)
    elif task == "video-text":
        result = doubleimage_text_zeroshot(image, image2, text_list)
    else:
        raise NotImplementedError
    return result


def main():
    inputs = [
        gr.inputs.Radio(
            choices=[
                "image-text",
                "audio-text",
                "video-text",
            ],
            type="value",
            default="image-text",
            label="Task",
        ),
        gr.inputs.Textbox(lines=1, label="Candidate texts"),
        gr.inputs.Image(type="filepath", label="Input image"),
        gr.inputs.Audio(type="filepath", label="Input audio"),
        gr.inputs.Image(type="filepath", label="Input image2"),
    ]

    iface = gr.Interface(
        inference,
        inputs,
        "label",
        description="""<p>This is a simple demo of ImageBind for zero-shot cross-modal understanding (now including image classification, audio classification, and video classification). Please refer to the original <a href='https://arxiv.org/abs/2305.05665' target='_blank'>paper</a> and <a href='https://github.com/facebookresearch/ImageBind' target='_blank'>repo</a> for more details.<br>
                    To test your own cases, you can upload an image, an audio or a video, and provide the candidate texts separated by "|".<br>
                    You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""",
        title="ImageBind: Zero-shot Cross-modal Understanding",
    )

    iface.launch()


if __name__ == "__main__":
    main()