Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,127 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from langchain.
|
4 |
-
from langchain.
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
-
from langchain.chat_models import AzureChatOpenAI
|
7 |
-
from langchain.chains.summarize import load_summarize_chain
|
8 |
-
from langchain.chains import AnalyzeDocumentChain
|
9 |
-
from PyPDF2 import PdfReader
|
10 |
from langchain.document_loaders import TextLoader
|
11 |
-
from langchain.indexes import VectorstoreIndexCreator
|
12 |
from langchain.document_loaders import PyPDFLoader
|
13 |
-
import
|
14 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
|
|
19 |
|
20 |
-
os.environ["OPENAI_API_TYPE"] = "azure"
|
21 |
-
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
openai.api_key = os.environ["OPENAI_API_KEY"]
|
27 |
-
|
28 |
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
st.title("Wipro demo with azure cognitive 2 ")
|
33 |
|
34 |
|
35 |
-
atemprature = st.slider('Fact vs Creative?', 0, 10, 1)
|
36 |
-
atemprature = atemprature / 10.0
|
37 |
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
st.
|
|
|
41 |
|
42 |
|
43 |
|
44 |
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
You are an AI assistant.
|
49 |
-
{concept}
|
50 |
-
"""
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
temperature=atemprature,
|
56 |
-
max_tokens=800,
|
57 |
-
top_p=1,
|
58 |
-
frequency_penalty=0,
|
59 |
-
presence_penalty=0,
|
60 |
-
stop=None)
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
|
|
65 |
|
66 |
-
if st.button("Ask Questions Simplify "):
|
67 |
-
template = """
|
68 |
-
You are an AI assistant.
|
69 |
-
{concept}
|
70 |
-
"""
|
71 |
|
72 |
-
|
73 |
-
engine="gpt-35-turbo",
|
74 |
-
messages = [{"role":"system","content":"You are an AI assistant that helps people find information. Please explain the information like i am a five."},{"role":"user","content":yourquestion}],
|
75 |
-
temperature=0,
|
76 |
-
max_tokens=800,
|
77 |
-
top_p=1,
|
78 |
-
frequency_penalty=0,
|
79 |
-
presence_penalty=0,
|
80 |
-
stop=None)
|
81 |
|
82 |
-
# Run the chain only specifying the input variable.
|
83 |
-
st.write(response)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
# Run the chain only specifying the input variable.
|
101 |
-
st.write(chain.run(yourquestion))
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
Explain the concept of {concept} in Hindi
|
109 |
-
"""
|
110 |
|
111 |
-
prompt = PromptTemplate(
|
112 |
-
input_variables=["concept"],
|
113 |
-
template=template,
|
114 |
-
)
|
115 |
|
116 |
|
117 |
-
from langchain.chains import LLMChain
|
118 |
-
chain = LLMChain(llm=llm, prompt=prompt)
|
119 |
|
120 |
-
|
121 |
-
st.write(chain.run(yourquestion))
|
|
|
1 |
+
%%writefile app.py
|
2 |
+
import os
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain.llms import AzureOpenAI
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain.document_loaders import TextLoader
|
|
|
6 |
from langchain.document_loaders import PyPDFLoader
|
7 |
+
from langchain.indexes import VectorstoreIndexCreator
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain.vectorstores import Chroma
|
11 |
+
from langchain.chains.question_answering import load_qa_chain
|
12 |
+
from langchain.llms import AzureOpenAI
|
13 |
+
from langchain.chains.question_answering import load_qa_chain
|
14 |
+
import streamlit as st
|
15 |
+
from PIL import Image
|
16 |
|
17 |
+
#image = Image.open('https://www.wipro.com/content/dam/nexus/en/brand/images/secondary-logo-400x276.png')
|
18 |
+
#st.image(image, caption='Wipro impact logo')
|
19 |
|
20 |
+
st.title("Wipro Impact | CSRD | Advisor")
|
21 |
|
22 |
+
st.header("Enable clients to prepare for CSRD.. ")
|
23 |
|
|
|
|
|
24 |
|
25 |
+
genre = st.radio(
|
26 |
+
"Choose a CSRD focus area for AI question answering",
|
27 |
+
('E1-Climate Change', 'E4-Biodiversity and ecosystem', 'S1-Own Workforce'), index=0)
|
|
|
|
|
28 |
|
29 |
+
url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F13%2520Draft%2520ESRS%2520S1%2520Own%2520workforce%2520November%25202022.pdf"
|
30 |
|
31 |
+
if genre == 'E1-Climate Change':
|
32 |
+
url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F08%2520Draft%2520ESRS%2520E1%2520Climate%2520Change%2520November%25202022.pdf"
|
33 |
+
samplequestions = ["What are the climate related indicators?", "List all the disclosure requirments listed in page 3?", "Policies related to climate change mitigation and adaptation?",
|
34 |
+
"What should the company disclose regarding Actions and resources in relation to climate change policies?" , "How should the GHG emission reduction targets be reported?" ,
|
35 |
+
"Total energy consumption from non-renewable sources for high climate impact sectors should be disaggregated as ?",
|
36 |
+
"Total energy consumption from renewable sources should be disaggregated as ?" ,
|
37 |
+
"What should be disclosed on GHG removals and GHG mitigation projects financed through carbon credits ?" ,
|
38 |
+
"Is it wise to invest on carbon credits? ",
|
39 |
+
"What is Climate change adaptation? ", "What are Decarbonisation levers?" ]
|
40 |
|
41 |
+
if genre == 'E4-Biodiversity and ecosystem':
|
42 |
+
url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F11%2520Draft%2520ESRS%2520E4%2520Biodiversity%2520and%2520ecosystems%2520November%25202022.pdf"
|
43 |
+
samplequestions = ["What are the Biodiversity related indicators?", "List all the disclosure requirments listed in page 3?"]
|
44 |
+
if genre == 'S1-Own Workforce':
|
45 |
+
url = "https://www.efrag.org/Assets/Download?assetUrl=%2Fsites%2Fwebpublishing%2FSiteAssets%2F13%2520Draft%2520ESRS%2520S1%2520Own%2520workforce%2520November%25202022.pdf"
|
46 |
+
samplequestions = ["What are the social related indicators?", "List all the disclosure requirments listed in page 3?"]
|
47 |
|
|
|
48 |
|
49 |
|
|
|
|
|
50 |
|
51 |
+
sampleselectedquestion = st.selectbox(
|
52 |
+
'Just ask your question or start with a one of these example questions...', samplequestions )
|
53 |
|
54 |
+
st.write(" :green[ Ask any thing on your mind...just type your question here...]")
|
55 |
+
yourquestion = st.text_input('Your question', sampleselectedquestion)
|
56 |
+
st.write('Your typed .. ', yourquestion)
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
+
os.environ['OPENAI_API_TYPE'] = 'azure'
|
62 |
+
os.environ['OPENAI_API_VERSION'] = '2023-03-15-preview'
|
63 |
|
64 |
+
llmgpt3 = AzureOpenAI( deployment_name="testdavanci", model_name="text-davinci-003" )
|
65 |
+
chain = load_qa_chain(llm=llmgpt3, chain_type="map_reduce")
|
|
|
|
|
|
|
66 |
|
67 |
+
aimethod = st.radio(
|
68 |
+
"Choose a AI brain or document comprehension method",
|
69 |
+
('2 minutes AI method map_reduce', '4 minutes AI method refine' ), index=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
mychain_type = "map_reduce"
|
72 |
+
if aimethod == '2 minutes AI method map_reduce':
|
73 |
+
mychain_type = "map_reduce"
|
74 |
+
if aimethod == '4 minutes AI method refine':
|
75 |
+
mychain_type = "refine"
|
76 |
|
77 |
+
chain = load_qa_chain(llm=llmgpt3, chain_type=mychain_type)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
loader1 = PyPDFLoader(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
82 |
|
83 |
+
def history():
|
84 |
+
mycount = 0
|
85 |
+
if 'count' not in st.session_state:
|
86 |
+
st.session_state['count'] = 0
|
87 |
+
else:
|
88 |
+
mycount = st.session_state['count']
|
89 |
|
90 |
+
if True:
|
91 |
+
st.write(mycount)
|
92 |
+
mycount = mycount + 1
|
93 |
+
st.session_state['count'] = mycount
|
94 |
+
for i in range(mycount):
|
95 |
+
mystatekeyindex = "element" + str(i)
|
96 |
+
mystatekeyanswerindex = "elementANS" + str(i)
|
97 |
+
if mystatekeyindex not in st.session_state:
|
98 |
+
st.session_state[mystatekeyindex] = yourquestion
|
99 |
+
st.session_state[mystatekeyanswerindex] = answer
|
100 |
+
if mystatekeyindex in st.session_state:
|
101 |
+
with st.expander(st.session_state[mystatekeyindex]):
|
102 |
+
st.write( st.session_state[mystatekeyanswerindex] )
|
103 |
|
104 |
|
105 |
+
def colorizedtext(acolor, astring):
|
106 |
+
formattedcolor = ":" + acolor + "[" + astring + "]"
|
107 |
+
return formattedcolor
|
108 |
|
|
|
|
|
109 |
|
110 |
+
if st.button("Ask QA "):
|
111 |
+
documents = loader1.load()
|
112 |
+
answer = ""
|
113 |
+
with st.spinner(" Finding answer for your question " ):
|
114 |
+
st.write("AI is reading this [link](%s)" % url)
|
115 |
+
with st.expander( "Employing your choice of AI method ... " + aimethod + "..."):
|
116 |
+
st.write(str(chain)[:100])
|
117 |
+
st.subheader(colorizedtext("red", yourquestion))
|
118 |
|
119 |
|
120 |
+
answer = chain.run(input_documents=documents, question=yourquestion)
|
121 |
+
st.subheader(colorizedtext("blue", answer))
|
122 |
+
history()
|
|
|
|
|
123 |
|
|
|
|
|
|
|
|
|
124 |
|
125 |
|
|
|
|
|
126 |
|
127 |
+
|
|