import os from langchain.chains import RetrievalQA from langchain.llms import AzureOpenAI from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader from langchain.indexes import VectorstoreIndexCreator from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains.question_answering import load_qa_chain from langchain.llms import AzureOpenAI from langchain.chains.question_answering import load_qa_chain import streamlit as st from PIL import Image import time image = Image.open('Wipro logo.png') st.image(image) st.title("Wipro impact | The inquisitive sustainability leader: Learn some of the best practices in sustainability from success stories of leading companies.. ") st.header("Welcome!. Today, What company's sustainability story is inspiring you ?.. ") myurl = st.text_input("Give the URL to find a sustainability or annual report", "https://www.wipro.com/content/dam/nexus/en/sustainability/sustainability_reports/wipro-sustainability-report-fy-2021-22.pdf") yourquestion = st.text_input('Ask your question on best practices', 'What is Wipro plans for Biodiversity in 2024?') st.write('Your input is ', yourquestion) aimethod = st.radio( "Choose a AI brain", ('GPT3', 'GPT3.5' ), index=1) os.environ['OPENAI_API_TYPE'] = 'azure' os.environ['OPENAI_API_VERSION'] = '2023-03-15-preview' llmgpt3 = AzureOpenAI( deployment_name="testdavanci", model_name="text-davinci-003" ) #llmchatgpt = AzureOpenAI( deployment_name="esujnand", model_name="gpt-35-turbo" ) if myurl: index = None loader1 = PyPDFLoader(myurl) langchainembeddings = OpenAIEmbeddings(deployment="textembedding", chunk_size=1) index = VectorstoreIndexCreator( # split the documents into chunks text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0), # select which embeddings we want to use embedding=langchainembeddings, # use Chroma as the vectorestore to index and search embeddings vectorstore_cls=Chroma ).from_loaders([loader1]) st.write("loaded") if yourquestion: answer = index.query(llm=llmgpt3, question=yourquestion, chain_type="map_reduce") st.write(answer)