import streamlit as st from langchain import OpenAI, PromptTemplate, LLMChain from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain.chat_models import AzureChatOpenAI from langchain.chains.summarize import load_summarize_chain from langchain.chains import AnalyzeDocumentChain from PyPDF2 import PdfReader from langchain.document_loaders import TextLoader from langchain.indexes import VectorstoreIndexCreator from langchain.document_loaders import PyPDFLoader import os import openai import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" openai.api_type = "azure" openai.api_base = "https://embeddinguseopenai.openai.azure.com/" openai.api_version = "2023-03-15-preview" openai.api_key = os.environ["OPENAI_API_KEY"] st.title("Wipro demo with azure cognitive 2 ") atemprature = st.slider('Fact vs Creative?', 0, 10, 1) atemprature = atemprature / 10.0 yourquestion = st.text_input('Your Question', 'First identify the indicators required as per EFRAG Environmental document. List these indicators. For each of these indicators, find out how Wipro is performing.') st.write('Your input is ', yourquestion) if st.button("Ask Questions "): template = """ You are an AI assistant. {concept} """ response = openai.ChatCompletion.create( engine="gpt-35-turbo", messages = [{"role":"system","content":"You are an AI assistant that helps people find information."},{"role":"user","content":yourquestion}], temperature=atemprature, max_tokens=800, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None) # Run the chain only specifying the input variable. st.write(response) if st.button("Ask Questions Simplify "): template = """ You are an AI assistant. {concept} """ response = openai.ChatCompletion.create( engine="gpt-35-turbo", messages = [{"role":"system","content":"You are an AI assistant that helps people find information. Please explain the information like i am a five."},{"role":"user","content":yourquestion}], temperature=0, max_tokens=800, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None) # Run the chain only specifying the input variable. st.write(response) if st.button("Ask trying here "): template = """ You are an expert on topics of Sustainability, Climate action and UN Sustainable Development Goals. Explain the concept of {concept} like i am a five """ prompt = PromptTemplate( input_variables=["concept"], template=template, ) from langchain.chains import LLMChain chain = LLMChain(llm=llm, prompt=prompt) # Run the chain only specifying the input variable. st.write(chain.run(yourquestion)) if st.button("Ask Hindi "): template = """ You are an expert on topics of Sustainability, Climate action and UN Sustainable Development Goals. Explain the concept of {concept} in Hindi """ prompt = PromptTemplate( input_variables=["concept"], template=template, ) from langchain.chains import LLMChain chain = LLMChain(llm=llm, prompt=prompt) # Run the chain only specifying the input variable. st.write(chain.run(yourquestion))