Update app.py
Browse files
app.py
CHANGED
@@ -1,178 +1,14 @@
|
|
1 |
-
import os
|
2 |
-
import uvicorn
|
3 |
from fastapi import FastAPI, File, UploadFile
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
import google.generativeai as genai
|
6 |
-
from ultralytics import YOLO
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
import json
|
10 |
-
import
|
11 |
-
import pickle
|
12 |
-
import time
|
13 |
-
from datetime import datetime
|
14 |
-
|
15 |
-
# Initialize FastAPI app
|
16 |
-
app = FastAPI(title="Food Nutrition API",
|
17 |
-
description="API for detecting food items and retrieving nutritional information")
|
18 |
-
|
19 |
-
# Add CORS middleware
|
20 |
-
app.add_middleware(
|
21 |
-
CORSMiddleware,
|
22 |
-
allow_origins=["*"], # Allows all origins, modify for production
|
23 |
-
allow_credentials=True,
|
24 |
-
allow_methods=["*"], # Allows all methods
|
25 |
-
allow_headers=["*"], # Allows all headers
|
26 |
-
)
|
27 |
-
|
28 |
-
# Load YOLOv8 model
|
29 |
-
model = YOLO("models/best.pt")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Set up Google Gemini API - Get from environment variable
|
34 |
-
GOOGLE_API_KEY = "AIzaSyD_VdzzRsWhM7_SrYTwgi0VT2cZJ6tWETE"
|
35 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
36 |
-
gemini_model = genai.GenerativeModel("gemini-1.5-pro")
|
37 |
-
|
38 |
-
# # Cache configuration
|
39 |
-
# CACHE_DIR = os.getenv("CACHE_DIR", ".") # Get cache directory from environment or use current directory
|
40 |
-
# CACHE_FILE = os.path.join(CACHE_DIR, "food_nutrition_cache.pkl")
|
41 |
-
# CACHE_EXPIRY_DAYS = int(os.getenv("CACHE_EXPIRY_DAYS", "30")) # Cache entries expire after 30 days by default
|
42 |
-
|
43 |
-
CACHE_DIR = os.getenv("CACHE_DIR", "") # Use /tmp for temporary storage
|
44 |
-
CACHE_FILE = os.path.join(CACHE_DIR, "food_nutrition_cache.pkl")
|
45 |
-
CACHE_EXPIRY_DAYS = int(os.getenv("CACHE_EXPIRY_DAYS", "30")) # Default to 30 days
|
46 |
-
|
47 |
-
def load_cache():
|
48 |
-
"""Load the nutrition cache from disk."""
|
49 |
-
if os.path.exists(CACHE_FILE):
|
50 |
-
try:
|
51 |
-
with open(CACHE_FILE, 'rb') as f:
|
52 |
-
return pickle.load(f)
|
53 |
-
except (pickle.PickleError, EOFError):
|
54 |
-
print("Cache file corrupted, creating new cache")
|
55 |
-
return {}
|
56 |
-
|
57 |
-
|
58 |
-
def save_cache(cache):
|
59 |
-
"""Save the nutrition cache to disk."""
|
60 |
-
try:
|
61 |
-
# Ensure cache directory exists
|
62 |
-
os.makedirs(os.path.dirname(CACHE_FILE), exist_ok=True)
|
63 |
-
with open(CACHE_FILE, 'wb') as f:
|
64 |
-
pickle.dump(cache, f)
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error saving cache: {e}")
|
67 |
-
|
68 |
-
|
69 |
-
# Initialize the cache
|
70 |
-
nutrition_cache = load_cache()
|
71 |
-
|
72 |
-
|
73 |
-
def clean_expired_cache_entries():
|
74 |
-
"""Remove expired entries from the cache."""
|
75 |
-
current_time = time.time()
|
76 |
-
expiry_seconds = CACHE_EXPIRY_DAYS * 24 * 60 * 60
|
77 |
-
expired_keys = []
|
78 |
-
|
79 |
-
for food_item, entry in nutrition_cache.items():
|
80 |
-
if current_time - entry['timestamp'] > expiry_seconds:
|
81 |
-
expired_keys.append(food_item)
|
82 |
-
|
83 |
-
for key in expired_keys:
|
84 |
-
del nutrition_cache[key]
|
85 |
-
|
86 |
-
if expired_keys:
|
87 |
-
save_cache(nutrition_cache)
|
88 |
-
print(f"Removed {len(expired_keys)} expired cache entries")
|
89 |
-
|
90 |
-
|
91 |
-
def get_food_info(food_item):
|
92 |
-
"""Fetch nutritional information with caching."""
|
93 |
-
# Check if the food item is in cache and not expired
|
94 |
-
if food_item in nutrition_cache:
|
95 |
-
print(f"Cache hit for {food_item}")
|
96 |
-
return nutrition_cache[food_item]['data']
|
97 |
-
|
98 |
-
print(f"Cache miss for {food_item}, fetching from API")
|
99 |
-
# If not in cache, fetch from Gemini API
|
100 |
-
prompt = f"""
|
101 |
-
Provide the nutritional information for "{food_item}" in JSON format with the following structure:
|
102 |
-
|
103 |
-
{{
|
104 |
-
"food_item": "{food_item}",
|
105 |
-
"nutritional_info": {{
|
106 |
-
"calories_kcal": value,
|
107 |
-
"protein_g": value,
|
108 |
-
"fiber_g": value,
|
109 |
-
"vitamins": {{
|
110 |
-
"Vitamin A_mcg": value,
|
111 |
-
"Vitamin C_mg": value,
|
112 |
-
"Vitamin D_mcg": value,
|
113 |
-
"Vitamin E_mg": value,
|
114 |
-
"Vitamin K_mcg": value,
|
115 |
-
"Vitamin B1_mg": value,
|
116 |
-
"Vitamin B2_mg": value,
|
117 |
-
"Vitamin B3_mg": value,
|
118 |
-
"Vitamin B6_mg": value,
|
119 |
-
"Vitamin B12_mcg": value,
|
120 |
-
"Folate_mcg": value
|
121 |
-
}}
|
122 |
-
}},
|
123 |
-
"health_benefits": [
|
124 |
-
"Brief description of health benefit 1",
|
125 |
-
"Brief description of health benefit 2"
|
126 |
-
]
|
127 |
-
}}
|
128 |
-
|
129 |
-
Ensure the response is **valid JSON** inside triple backticks (```json ... ```).
|
130 |
-
"""
|
131 |
|
132 |
-
|
133 |
-
response = gemini_model.generate_content(prompt)
|
134 |
-
result = response.text if response else "No data found"
|
135 |
-
|
136 |
-
# Store in cache with timestamp
|
137 |
-
nutrition_cache[food_item] = {
|
138 |
-
'data': result,
|
139 |
-
'timestamp': time.time()
|
140 |
-
}
|
141 |
-
|
142 |
-
# Save updated cache
|
143 |
-
save_cache(nutrition_cache)
|
144 |
-
|
145 |
-
return result
|
146 |
-
except Exception as e:
|
147 |
-
print(f"Error fetching from Gemini API: {e}")
|
148 |
-
return json.dumps({"error": f"Failed to retrieve data: {str(e)}"})
|
149 |
-
|
150 |
-
|
151 |
-
def parse_nutrition_response(response_dict):
|
152 |
-
"""Parses the raw response containing JSON-like data embedded in a string format."""
|
153 |
-
parsed_data = {}
|
154 |
-
|
155 |
-
for food, raw_json in response_dict.items():
|
156 |
-
# Extract JSON part from the response using regex
|
157 |
-
json_match = re.search(r"```json\n(.*?)\n```", raw_json, re.DOTALL)
|
158 |
-
|
159 |
-
if json_match:
|
160 |
-
json_data = json_match.group(1) # Extract JSON content
|
161 |
-
try:
|
162 |
-
parsed_data[food] = json.loads(json_data) # Convert JSON string to dictionary
|
163 |
-
except json.JSONDecodeError:
|
164 |
-
parsed_data[food] = {"error": "Invalid JSON format"}
|
165 |
-
else:
|
166 |
-
parsed_data[food] = {"error": "JSON not found in response"}
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
def detect_food(image: Image.Image):
|
172 |
-
"""Detect food items in an image using YOLOv8."""
|
173 |
-
results = model(image)
|
174 |
-
detected_foods = {model.names[int(box.cls)] for result in results for box in result.boxes}
|
175 |
-
return list(detected_foods)
|
176 |
|
177 |
@app.get("/")
|
178 |
def read_root():
|
@@ -183,92 +19,66 @@ async def root_head():
|
|
183 |
return {} # Empty response for HEAD requests
|
184 |
|
185 |
@app.post("/analyze")
|
186 |
-
async def
|
187 |
-
"""
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
}
|
214 |
-
|
215 |
-
return {
|
216 |
-
"detected_foods": detected_foods,
|
217 |
-
"nutrition_info": parsed_nutrition_info,
|
218 |
-
"cache_stats": cache_stats
|
219 |
-
}
|
220 |
-
except Exception as e:
|
221 |
-
return {"error": f"An error occurred: {str(e)}"}
|
222 |
-
|
223 |
-
|
224 |
-
# Add endpoints to manage the cache
|
225 |
-
@app.get("/cache/stats")
|
226 |
-
async def get_cache_stats():
|
227 |
-
"""Get statistics about the nutrition cache."""
|
228 |
-
if not nutrition_cache:
|
229 |
-
return {"message": "Cache is empty"}
|
230 |
-
|
231 |
-
return {
|
232 |
-
"cache_size": len(nutrition_cache),
|
233 |
-
"foods_cached": list(nutrition_cache.keys()),
|
234 |
-
"oldest_entry": datetime.fromtimestamp(
|
235 |
-
min([entry['timestamp'] for entry in nutrition_cache.values()])
|
236 |
-
).isoformat(),
|
237 |
-
"newest_entry": datetime.fromtimestamp(
|
238 |
-
max([entry['timestamp'] for entry in nutrition_cache.values()])
|
239 |
-
).isoformat()
|
240 |
}
|
|
|
241 |
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
"""Clear the nutrition cache."""
|
246 |
-
global nutrition_cache
|
247 |
-
nutrition_cache = {}
|
248 |
-
save_cache(nutrition_cache)
|
249 |
-
return {"message": "Cache cleared successfully"}
|
250 |
-
|
251 |
-
|
252 |
-
@app.delete("/cache/item/{food_item}")
|
253 |
-
async def delete_cache_item(food_item: str):
|
254 |
-
"""Delete a specific food item from the cache."""
|
255 |
-
if food_item in nutrition_cache:
|
256 |
-
del nutrition_cache[food_item]
|
257 |
-
save_cache(nutrition_cache)
|
258 |
-
return {"message": f"Removed {food_item} from cache"}
|
259 |
-
return {"message": f"{food_item} not found in cache"}
|
260 |
-
|
261 |
|
262 |
-
#
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
"
|
268 |
-
"cache_size": len(nutrition_cache),
|
269 |
-
"yolo_model_loaded": model is not None,
|
270 |
-
"gemini_api_configured": GOOGLE_API_KEY != ""
|
271 |
-
}
|
272 |
|
273 |
import os
|
274 |
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
|
|
2 |
import google.generativeai as genai
|
|
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
import json
|
6 |
+
from google.colab import userdata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Set your API key
|
11 |
+
genai.configure(api_key=userdata.get('GOOGLE_API_KEY'))
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@app.get("/")
|
14 |
def read_root():
|
|
|
19 |
return {} # Empty response for HEAD requests
|
20 |
|
21 |
@app.post("/analyze")
|
22 |
+
async def analyze_food_image(file: UploadFile = File(...)):
|
23 |
+
"""Analyzes food items in the image using Gemini 1.5 Flash"""
|
24 |
+
image_bytes = await file.read()
|
25 |
+
img = Image.open(io.BytesIO(image_bytes))
|
26 |
+
|
27 |
+
model = genai.GenerativeModel("gemini-1.5-flash") # Best for real-time image processing
|
28 |
+
|
29 |
+
# Updated prompt for structured JSON response
|
30 |
+
prompt = """
|
31 |
+
Identify all food items in the given image and determine their approximate quantity. Then, provide nutritional information
|
32 |
+
in valid JSON format following this structure:
|
33 |
+
|
34 |
+
```json
|
35 |
+
{
|
36 |
+
"detected_food_items": [
|
37 |
+
{
|
38 |
+
"food_item": "Detected food name",
|
39 |
+
"quantity": "Approximate quantity (e.g., 1 bowl, 2 slices, half a chapati)",
|
40 |
+
"nutritional_info": {
|
41 |
+
"calories_kcal": value,
|
42 |
+
"protein_g": value,
|
43 |
+
"fiber_g": value,
|
44 |
+
"vitamins": {
|
45 |
+
"Vitamin A_mcg": value,
|
46 |
+
"Vitamin C_mg": value,
|
47 |
+
"Vitamin D_mcg": value,
|
48 |
+
"Vitamin E_mg": value,
|
49 |
+
"Vitamin K_mcg": value,
|
50 |
+
"Vitamin B1_mg": value,
|
51 |
+
"Vitamin B2_mg": value,
|
52 |
+
"Vitamin B3_mg": value,
|
53 |
+
"Vitamin B6_mg": value,
|
54 |
+
"Vitamin B12_mcg": value,
|
55 |
+
"Folate_mcg": value
|
56 |
+
}
|
57 |
+
},
|
58 |
+
"health_benefits": [
|
59 |
+
"Brief description of health benefit 1",
|
60 |
+
"Brief description of health benefit 2"
|
61 |
+
]
|
62 |
}
|
63 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
}
|
65 |
+
```
|
66 |
|
67 |
+
- **Ensure the response is valid JSON** inside triple backticks (```json ... ```).
|
68 |
+
- **Include accurate nutritional values based on the given quantity.**
|
69 |
+
- **If exact values are unavailable, provide estimated values.**
|
70 |
+
- **Ensure proper formatting and completeness of data.**
|
71 |
+
"""
|
72 |
|
73 |
+
# Get response from API
|
74 |
+
response = model.generate_content([prompt, img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# Extract JSON response
|
77 |
+
try:
|
78 |
+
json_response = response.text.strip("```json").strip("```") # Remove markdown formatting
|
79 |
+
return json.loads(json_response) # Convert to Python dictionary
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
return {"error": "Invalid response format from AI model"}
|
|
|
|
|
|
|
|
|
82 |
|
83 |
import os
|
84 |
|