File size: 8,821 Bytes
788caba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from flask import Flask, render_template, request
import folium
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
import pandas as pd
import os

app = Flask(__name__)

# Load the dataset
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']


@app.route('/')
def home():
    return render_template('index.html', map_html="", selected_map="Home")


@app.route('/prodction_analysis', methods=['GET', 'POST'])
def production_analysis():
    crop_options = df['Crop'].unique().tolist()
    selected_crop = request.form.get('crop_type') if request.method == 'POST' else None

    if not selected_crop:
        return render_template('index.html', map_html="", selected_map="Production Analysis",
                               crop_options=crop_options, selected_crop=None)

    crop_data = df[df['Crop'] == selected_crop]

    if crop_data.empty:
        return render_template('index.html', map_html="", selected_map="No Data Available",
                               crop_options=crop_options, selected_crop=selected_crop)

    time_index = crop_data['Crop_Year'].unique()
    heatmap_data = [
        [[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()]
        for year in time_index
    ]

    m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
    heatmap = HeatMapWithTime(
        heatmap_data,
        index=[str(year) for year in time_index],
        auto_play=True,
        max_opacity=0.6
    )
    heatmap.add_to(m)

    map_html = m._repr_html_()
    return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis",
                           crop_options=crop_options, selected_crop=selected_crop)


@app.route('/heatmap_analysis')
def heatmap_analysis():
    global df  # Declare df as global
    m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
    fg = folium.FeatureGroup(name="Crops")
    m.add_child(fg)
    df_sampled = df.sample(frac=0.005, random_state=42)  # Use a different variable for sampled df
    for crop in df_sampled['Crop'].unique():
        subgroup = FeatureGroupSubGroup(fg, crop)
        m.add_child(subgroup)
        crop_data = df_sampled[df_sampled['Crop'] == crop]

        heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()]
        HeatMap(heatmap_data).add_to(subgroup)

    folium.LayerControl(collapsed=False).add_to(m)

    map_html = m._repr_html_()
    return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis")


@app.route('/season_analysis')
def season_analysis():
    global df  # Declare df as global

    # Initialize the map centered over India with an appropriate zoom level
    m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)

    # Sample a fraction of the dataframe for performance
    df_sampled = df.sample(frac=0.005, random_state=42)

    # Create a dictionary to store top 5 crops for each location
    top_crops = {}

    # Collect the top crops for each unique location (Latitude, Longitude)
    for _, row in df_sampled.iterrows():
        lat_lon = (row['Latitude'], row['Longitude'])
        crop = row['Crop']
        production = row['Production']

        if lat_lon not in top_crops:
            top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']}

        if crop not in top_crops[lat_lon]['Crops']:
            top_crops[lat_lon]['Crops'][crop] = 0
        top_crops[lat_lon]['Crops'][crop] += production

    # Limit to top 5 crops for each location
    for location, data in top_crops.items():
        top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]

    # Add scatter points for each unique location with a different color for each season
    season_colors = {
        'Kharif': 'orange',
        'Rabi': 'green',
        'Winter': 'blue',
        'Autumn':'pink',
        'Rabi':'brown',
        'Summer':'yellow',
        'Whole Year':'Red'
    }

    for (latitude, longitude), data in top_crops.items():
        season = data['Season']
        top_crop_list = data['Crops']
        area = data['Area']

        # Create a string for the top crops
        top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list])

        # Add a scatter point to the map for each location
        folium.CircleMarker(
            location=[latitude, longitude],
            radius=7,  # Fixed radius for scatter points
            color=season_colors.get(season, 'gray'),  # Use season color or gray if not found
            fill=True,
            fill_color=season_colors.get(season, 'gray'),
            fill_opacity=0.7,
            tooltip=(f"Latitude: {latitude}<br>"
                     f"Longitude: {longitude}<br>"
                     f"Season: {season}<br>"
                     f"Area: {area}<br>"
                     f"Top 5 Crops:<br>{top_crops_str}")
        ).add_to(m)

    # Convert the map to HTML format for rendering
    map_html = m._repr_html_()

    # Render the map in the template
    return render_template('index.html', map_html=map_html, selected_map="Season Analysis")


@app.route('/crop_analysis')
def crop_analysis():
    global df  # Declare df as global
    df_sampled = df.sample(frac=0.005, random_state=42)  # Use a different variable for sampled df
    m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)

    for district in df_sampled['District'].unique():
        district_data = df_sampled[df_sampled['District'] == district]
        top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist()
        lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude']

        folium.Marker(
            location=[lat, lon],
            popup=f"<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}",
            icon=folium.Icon(icon='arrow-up', color='green')
        ).add_to(m)

    map_html = m._repr_html_()
    return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis")


@app.route('/combined_analysis')
def combined_analysis():
    global df  # Declare df as global

    # Sample a fraction of the dataframe for performance
    df_sampled = df.sample(frac=0.005, random_state=42)

    # Create the map centered over India with an appropriate zoom level
    m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)

    # Prepare heatmap data for area
    area_heat_data = [
        [row['Latitude'], row['Longitude'], row['Area']]
        for _, row in df_sampled.iterrows()
    ]

    # Add the heatmap for area (blue to red: low to high)
    HeatMap(
        data=area_heat_data,
        min_opacity=0.3,
        max_opacity=0.8,
        radius=15,
        blur=10,
        gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
    ).add_to(m)

    # Prepare heatmap data for production
    production_heat_data = [
        [row['Latitude'], row['Longitude'], row['Production']]
        for _, row in df_sampled.iterrows()
    ]

    # Add the heatmap for production (green to red: low to high production)
    HeatMap(
        data=production_heat_data,
        min_opacity=0.3,
        max_opacity=0.8,
        radius=15,
        blur=10,
        gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
    ).add_to(m)

    # Scatter plot for different seasons with distinct colors
    season_colors = {
        'Kharif': 'purple',
        'Rabi': 'orange',
        'Rabi': 'cyan',
        'Winter':'Yellow',
        'Summer':'Green',
        'Whole Year':'Red'
    }

    for _, row in df_sampled.iterrows():
        season = row['Season']
        color = season_colors.get(season, 'gray')  # Default to gray if the season is not recognized
        folium.CircleMarker(
            location=[row['Latitude'], row['Longitude']],
            radius=5,
            color=color,
            fill=True,
            fill_opacity=0.7,
            tooltip=(f"District: {row['District']}<br>"
                     f"Season: {row['Season']}<br>"
                     f"Area: {row['Area']}<br>"
                     f"Production: {row['Production']}")
        ).add_to(m)

    # Convert the map to HTML format
    map_html = m._repr_html_()

    # Render the map in the template
    return render_template('index.html', map_html=map_html, selected_map="Combined Area & Production Heatmaps")

if __name__ == '__main__':
    app.run(debug=True)