Update app.py
Browse files
app.py
CHANGED
@@ -1,241 +1,241 @@
|
|
1 |
-
from flask import Flask, render_template, request
|
2 |
-
import folium
|
3 |
-
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
|
4 |
-
import pandas as pd
|
5 |
-
import os
|
6 |
-
|
7 |
-
app = Flask(__name__)
|
8 |
-
|
9 |
-
# Load the dataset
|
10 |
-
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
|
11 |
-
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
|
12 |
-
|
13 |
-
|
14 |
-
@app.route('/')
|
15 |
-
def home():
|
16 |
-
return render_template('index.html', map_html="", selected_map="Home")
|
17 |
-
|
18 |
-
|
19 |
-
@app.route('/prodction_analysis', methods=['GET', 'POST'])
|
20 |
-
def production_analysis():
|
21 |
-
crop_options = df['Crop'].unique().tolist()
|
22 |
-
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
|
23 |
-
|
24 |
-
if not selected_crop:
|
25 |
-
return render_template('index.html', map_html="", selected_map="Production Analysis",
|
26 |
-
crop_options=crop_options, selected_crop=None)
|
27 |
-
|
28 |
-
crop_data = df[df['Crop'] == selected_crop]
|
29 |
-
|
30 |
-
if crop_data.empty:
|
31 |
-
return render_template('index.html', map_html="", selected_map="No Data Available",
|
32 |
-
crop_options=crop_options, selected_crop=selected_crop)
|
33 |
-
|
34 |
-
time_index = crop_data['Crop_Year'].unique()
|
35 |
-
heatmap_data = [
|
36 |
-
[[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()]
|
37 |
-
for year in time_index
|
38 |
-
]
|
39 |
-
|
40 |
-
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
41 |
-
heatmap = HeatMapWithTime(
|
42 |
-
heatmap_data,
|
43 |
-
index=[str(year) for year in time_index],
|
44 |
-
auto_play=True,
|
45 |
-
max_opacity=0.6
|
46 |
-
)
|
47 |
-
heatmap.add_to(m)
|
48 |
-
|
49 |
-
map_html = m._repr_html_()
|
50 |
-
return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis",
|
51 |
-
crop_options=crop_options, selected_crop=selected_crop)
|
52 |
-
|
53 |
-
|
54 |
-
@app.route('/heatmap_analysis')
|
55 |
-
def heatmap_analysis():
|
56 |
-
global df # Declare df as global
|
57 |
-
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
58 |
-
fg = folium.FeatureGroup(name="Crops")
|
59 |
-
m.add_child(fg)
|
60 |
-
df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df
|
61 |
-
for crop in df_sampled['Crop'].unique():
|
62 |
-
subgroup = FeatureGroupSubGroup(fg, crop)
|
63 |
-
m.add_child(subgroup)
|
64 |
-
crop_data = df_sampled[df_sampled['Crop'] == crop]
|
65 |
-
|
66 |
-
heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()]
|
67 |
-
HeatMap(heatmap_data).add_to(subgroup)
|
68 |
-
|
69 |
-
folium.LayerControl(collapsed=False).add_to(m)
|
70 |
-
|
71 |
-
map_html = m._repr_html_()
|
72 |
-
return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis")
|
73 |
-
|
74 |
-
|
75 |
-
@app.route('/season_analysis')
|
76 |
-
def season_analysis():
|
77 |
-
global df # Declare df as global
|
78 |
-
|
79 |
-
# Initialize the map centered over India with an appropriate zoom level
|
80 |
-
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
81 |
-
|
82 |
-
# Sample a fraction of the dataframe for performance
|
83 |
-
df_sampled = df.sample(frac=0.005, random_state=42)
|
84 |
-
|
85 |
-
# Create a dictionary to store top 5 crops for each location
|
86 |
-
top_crops = {}
|
87 |
-
|
88 |
-
# Collect the top crops for each unique location (Latitude, Longitude)
|
89 |
-
for _, row in df_sampled.iterrows():
|
90 |
-
lat_lon = (row['Latitude'], row['Longitude'])
|
91 |
-
crop = row['Crop']
|
92 |
-
production = row['Production']
|
93 |
-
|
94 |
-
if lat_lon not in top_crops:
|
95 |
-
top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']}
|
96 |
-
|
97 |
-
if crop not in top_crops[lat_lon]['Crops']:
|
98 |
-
top_crops[lat_lon]['Crops'][crop] = 0
|
99 |
-
top_crops[lat_lon]['Crops'][crop] += production
|
100 |
-
|
101 |
-
# Limit to top 5 crops for each location
|
102 |
-
for location, data in top_crops.items():
|
103 |
-
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
|
104 |
-
|
105 |
-
# Add scatter points for each unique location with a different color for each season
|
106 |
-
season_colors = {
|
107 |
-
'Kharif': 'orange',
|
108 |
-
'Rabi': 'green',
|
109 |
-
'Winter': 'blue',
|
110 |
-
'Autumn':'pink',
|
111 |
-
'Rabi':'brown',
|
112 |
-
'Summer':'yellow',
|
113 |
-
'Whole Year':'Red'
|
114 |
-
}
|
115 |
-
|
116 |
-
for (latitude, longitude), data in top_crops.items():
|
117 |
-
season = data['Season']
|
118 |
-
top_crop_list = data['Crops']
|
119 |
-
area = data['Area']
|
120 |
-
|
121 |
-
# Create a string for the top crops
|
122 |
-
top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list])
|
123 |
-
|
124 |
-
# Add a scatter point to the map for each location
|
125 |
-
folium.CircleMarker(
|
126 |
-
location=[latitude, longitude],
|
127 |
-
radius=7, # Fixed radius for scatter points
|
128 |
-
color=season_colors.get(season, 'gray'), # Use season color or gray if not found
|
129 |
-
fill=True,
|
130 |
-
fill_color=season_colors.get(season, 'gray'),
|
131 |
-
fill_opacity=0.7,
|
132 |
-
tooltip=(f"Latitude: {latitude}<br>"
|
133 |
-
f"Longitude: {longitude}<br>"
|
134 |
-
f"Season: {season}<br>"
|
135 |
-
f"Area: {area}<br>"
|
136 |
-
f"Top 5 Crops:<br>{top_crops_str}")
|
137 |
-
).add_to(m)
|
138 |
-
|
139 |
-
# Convert the map to HTML format for rendering
|
140 |
-
map_html = m._repr_html_()
|
141 |
-
|
142 |
-
# Render the map in the template
|
143 |
-
return render_template('index.html', map_html=map_html, selected_map="Season Analysis")
|
144 |
-
|
145 |
-
|
146 |
-
@app.route('/crop_analysis')
|
147 |
-
def crop_analysis():
|
148 |
-
global df # Declare df as global
|
149 |
-
df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df
|
150 |
-
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
151 |
-
|
152 |
-
for district in df_sampled['District'].unique():
|
153 |
-
district_data = df_sampled[df_sampled['District'] == district]
|
154 |
-
top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist()
|
155 |
-
lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude']
|
156 |
-
|
157 |
-
folium.Marker(
|
158 |
-
location=[lat, lon],
|
159 |
-
popup=f"<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}",
|
160 |
-
icon=folium.Icon(icon='arrow-up', color='green')
|
161 |
-
).add_to(m)
|
162 |
-
|
163 |
-
map_html = m._repr_html_()
|
164 |
-
return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis")
|
165 |
-
|
166 |
-
|
167 |
-
@app.route('/combined_analysis')
|
168 |
-
def combined_analysis():
|
169 |
-
global df # Declare df as global
|
170 |
-
|
171 |
-
# Sample a fraction of the dataframe for performance
|
172 |
-
df_sampled = df.sample(frac=0.005, random_state=42)
|
173 |
-
|
174 |
-
# Create the map centered over India with an appropriate zoom level
|
175 |
-
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
176 |
-
|
177 |
-
# Prepare heatmap data for area
|
178 |
-
area_heat_data = [
|
179 |
-
[row['Latitude'], row['Longitude'], row['Area']]
|
180 |
-
for _, row in df_sampled.iterrows()
|
181 |
-
]
|
182 |
-
|
183 |
-
# Add the heatmap for area (blue to red: low to high)
|
184 |
-
HeatMap(
|
185 |
-
data=area_heat_data,
|
186 |
-
min_opacity=0.3,
|
187 |
-
max_opacity=0.8,
|
188 |
-
radius=15,
|
189 |
-
blur=10,
|
190 |
-
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
|
191 |
-
).add_to(m)
|
192 |
-
|
193 |
-
# Prepare heatmap data for production
|
194 |
-
production_heat_data = [
|
195 |
-
[row['Latitude'], row['Longitude'], row['Production']]
|
196 |
-
for _, row in df_sampled.iterrows()
|
197 |
-
]
|
198 |
-
|
199 |
-
# Add the heatmap for production (green to red: low to high production)
|
200 |
-
HeatMap(
|
201 |
-
data=production_heat_data,
|
202 |
-
min_opacity=0.3,
|
203 |
-
max_opacity=0.8,
|
204 |
-
radius=15,
|
205 |
-
blur=10,
|
206 |
-
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
|
207 |
-
).add_to(m)
|
208 |
-
|
209 |
-
# Scatter plot for different seasons with distinct colors
|
210 |
-
season_colors = {
|
211 |
-
'Kharif': 'purple',
|
212 |
-
'Rabi': 'orange',
|
213 |
-
'Rabi': 'cyan',
|
214 |
-
'Winter':'Yellow',
|
215 |
-
'Summer':'Green',
|
216 |
-
'Whole Year':'Red'
|
217 |
-
}
|
218 |
-
|
219 |
-
for _, row in df_sampled.iterrows():
|
220 |
-
season = row['Season']
|
221 |
-
color = season_colors.get(season, 'gray') # Default to gray if the season is not recognized
|
222 |
-
folium.CircleMarker(
|
223 |
-
location=[row['Latitude'], row['Longitude']],
|
224 |
-
radius=5,
|
225 |
-
color=color,
|
226 |
-
fill=True,
|
227 |
-
fill_opacity=0.7,
|
228 |
-
tooltip=(f"District: {row['District']}<br>"
|
229 |
-
f"Season: {row['Season']}<br>"
|
230 |
-
f"Area: {row['Area']}<br>"
|
231 |
-
f"Production: {row['Production']}")
|
232 |
-
).add_to(m)
|
233 |
-
|
234 |
-
# Convert the map to HTML format
|
235 |
-
map_html = m._repr_html_()
|
236 |
-
|
237 |
-
# Render the map in the template
|
238 |
-
return render_template('index.html', map_html=map_html, selected_map="Combined Area & Production Heatmaps")
|
239 |
-
|
240 |
-
if __name__ == '__main__':
|
241 |
-
app.run(
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
import folium
|
3 |
+
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
|
9 |
+
# Load the dataset
|
10 |
+
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
|
11 |
+
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
|
12 |
+
|
13 |
+
|
14 |
+
@app.route('/')
|
15 |
+
def home():
|
16 |
+
return render_template('index.html', map_html="", selected_map="Home")
|
17 |
+
|
18 |
+
|
19 |
+
@app.route('/prodction_analysis', methods=['GET', 'POST'])
|
20 |
+
def production_analysis():
|
21 |
+
crop_options = df['Crop'].unique().tolist()
|
22 |
+
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
|
23 |
+
|
24 |
+
if not selected_crop:
|
25 |
+
return render_template('index.html', map_html="", selected_map="Production Analysis",
|
26 |
+
crop_options=crop_options, selected_crop=None)
|
27 |
+
|
28 |
+
crop_data = df[df['Crop'] == selected_crop]
|
29 |
+
|
30 |
+
if crop_data.empty:
|
31 |
+
return render_template('index.html', map_html="", selected_map="No Data Available",
|
32 |
+
crop_options=crop_options, selected_crop=selected_crop)
|
33 |
+
|
34 |
+
time_index = crop_data['Crop_Year'].unique()
|
35 |
+
heatmap_data = [
|
36 |
+
[[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()]
|
37 |
+
for year in time_index
|
38 |
+
]
|
39 |
+
|
40 |
+
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
41 |
+
heatmap = HeatMapWithTime(
|
42 |
+
heatmap_data,
|
43 |
+
index=[str(year) for year in time_index],
|
44 |
+
auto_play=True,
|
45 |
+
max_opacity=0.6
|
46 |
+
)
|
47 |
+
heatmap.add_to(m)
|
48 |
+
|
49 |
+
map_html = m._repr_html_()
|
50 |
+
return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis",
|
51 |
+
crop_options=crop_options, selected_crop=selected_crop)
|
52 |
+
|
53 |
+
|
54 |
+
@app.route('/heatmap_analysis')
|
55 |
+
def heatmap_analysis():
|
56 |
+
global df # Declare df as global
|
57 |
+
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
58 |
+
fg = folium.FeatureGroup(name="Crops")
|
59 |
+
m.add_child(fg)
|
60 |
+
df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df
|
61 |
+
for crop in df_sampled['Crop'].unique():
|
62 |
+
subgroup = FeatureGroupSubGroup(fg, crop)
|
63 |
+
m.add_child(subgroup)
|
64 |
+
crop_data = df_sampled[df_sampled['Crop'] == crop]
|
65 |
+
|
66 |
+
heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()]
|
67 |
+
HeatMap(heatmap_data).add_to(subgroup)
|
68 |
+
|
69 |
+
folium.LayerControl(collapsed=False).add_to(m)
|
70 |
+
|
71 |
+
map_html = m._repr_html_()
|
72 |
+
return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis")
|
73 |
+
|
74 |
+
|
75 |
+
@app.route('/season_analysis')
|
76 |
+
def season_analysis():
|
77 |
+
global df # Declare df as global
|
78 |
+
|
79 |
+
# Initialize the map centered over India with an appropriate zoom level
|
80 |
+
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
81 |
+
|
82 |
+
# Sample a fraction of the dataframe for performance
|
83 |
+
df_sampled = df.sample(frac=0.005, random_state=42)
|
84 |
+
|
85 |
+
# Create a dictionary to store top 5 crops for each location
|
86 |
+
top_crops = {}
|
87 |
+
|
88 |
+
# Collect the top crops for each unique location (Latitude, Longitude)
|
89 |
+
for _, row in df_sampled.iterrows():
|
90 |
+
lat_lon = (row['Latitude'], row['Longitude'])
|
91 |
+
crop = row['Crop']
|
92 |
+
production = row['Production']
|
93 |
+
|
94 |
+
if lat_lon not in top_crops:
|
95 |
+
top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']}
|
96 |
+
|
97 |
+
if crop not in top_crops[lat_lon]['Crops']:
|
98 |
+
top_crops[lat_lon]['Crops'][crop] = 0
|
99 |
+
top_crops[lat_lon]['Crops'][crop] += production
|
100 |
+
|
101 |
+
# Limit to top 5 crops for each location
|
102 |
+
for location, data in top_crops.items():
|
103 |
+
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
|
104 |
+
|
105 |
+
# Add scatter points for each unique location with a different color for each season
|
106 |
+
season_colors = {
|
107 |
+
'Kharif': 'orange',
|
108 |
+
'Rabi': 'green',
|
109 |
+
'Winter': 'blue',
|
110 |
+
'Autumn':'pink',
|
111 |
+
'Rabi':'brown',
|
112 |
+
'Summer':'yellow',
|
113 |
+
'Whole Year':'Red'
|
114 |
+
}
|
115 |
+
|
116 |
+
for (latitude, longitude), data in top_crops.items():
|
117 |
+
season = data['Season']
|
118 |
+
top_crop_list = data['Crops']
|
119 |
+
area = data['Area']
|
120 |
+
|
121 |
+
# Create a string for the top crops
|
122 |
+
top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list])
|
123 |
+
|
124 |
+
# Add a scatter point to the map for each location
|
125 |
+
folium.CircleMarker(
|
126 |
+
location=[latitude, longitude],
|
127 |
+
radius=7, # Fixed radius for scatter points
|
128 |
+
color=season_colors.get(season, 'gray'), # Use season color or gray if not found
|
129 |
+
fill=True,
|
130 |
+
fill_color=season_colors.get(season, 'gray'),
|
131 |
+
fill_opacity=0.7,
|
132 |
+
tooltip=(f"Latitude: {latitude}<br>"
|
133 |
+
f"Longitude: {longitude}<br>"
|
134 |
+
f"Season: {season}<br>"
|
135 |
+
f"Area: {area}<br>"
|
136 |
+
f"Top 5 Crops:<br>{top_crops_str}")
|
137 |
+
).add_to(m)
|
138 |
+
|
139 |
+
# Convert the map to HTML format for rendering
|
140 |
+
map_html = m._repr_html_()
|
141 |
+
|
142 |
+
# Render the map in the template
|
143 |
+
return render_template('index.html', map_html=map_html, selected_map="Season Analysis")
|
144 |
+
|
145 |
+
|
146 |
+
@app.route('/crop_analysis')
|
147 |
+
def crop_analysis():
|
148 |
+
global df # Declare df as global
|
149 |
+
df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df
|
150 |
+
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
151 |
+
|
152 |
+
for district in df_sampled['District'].unique():
|
153 |
+
district_data = df_sampled[df_sampled['District'] == district]
|
154 |
+
top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist()
|
155 |
+
lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude']
|
156 |
+
|
157 |
+
folium.Marker(
|
158 |
+
location=[lat, lon],
|
159 |
+
popup=f"<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}",
|
160 |
+
icon=folium.Icon(icon='arrow-up', color='green')
|
161 |
+
).add_to(m)
|
162 |
+
|
163 |
+
map_html = m._repr_html_()
|
164 |
+
return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis")
|
165 |
+
|
166 |
+
|
167 |
+
@app.route('/combined_analysis')
|
168 |
+
def combined_analysis():
|
169 |
+
global df # Declare df as global
|
170 |
+
|
171 |
+
# Sample a fraction of the dataframe for performance
|
172 |
+
df_sampled = df.sample(frac=0.005, random_state=42)
|
173 |
+
|
174 |
+
# Create the map centered over India with an appropriate zoom level
|
175 |
+
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
176 |
+
|
177 |
+
# Prepare heatmap data for area
|
178 |
+
area_heat_data = [
|
179 |
+
[row['Latitude'], row['Longitude'], row['Area']]
|
180 |
+
for _, row in df_sampled.iterrows()
|
181 |
+
]
|
182 |
+
|
183 |
+
# Add the heatmap for area (blue to red: low to high)
|
184 |
+
HeatMap(
|
185 |
+
data=area_heat_data,
|
186 |
+
min_opacity=0.3,
|
187 |
+
max_opacity=0.8,
|
188 |
+
radius=15,
|
189 |
+
blur=10,
|
190 |
+
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
|
191 |
+
).add_to(m)
|
192 |
+
|
193 |
+
# Prepare heatmap data for production
|
194 |
+
production_heat_data = [
|
195 |
+
[row['Latitude'], row['Longitude'], row['Production']]
|
196 |
+
for _, row in df_sampled.iterrows()
|
197 |
+
]
|
198 |
+
|
199 |
+
# Add the heatmap for production (green to red: low to high production)
|
200 |
+
HeatMap(
|
201 |
+
data=production_heat_data,
|
202 |
+
min_opacity=0.3,
|
203 |
+
max_opacity=0.8,
|
204 |
+
radius=15,
|
205 |
+
blur=10,
|
206 |
+
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
|
207 |
+
).add_to(m)
|
208 |
+
|
209 |
+
# Scatter plot for different seasons with distinct colors
|
210 |
+
season_colors = {
|
211 |
+
'Kharif': 'purple',
|
212 |
+
'Rabi': 'orange',
|
213 |
+
'Rabi': 'cyan',
|
214 |
+
'Winter':'Yellow',
|
215 |
+
'Summer':'Green',
|
216 |
+
'Whole Year':'Red'
|
217 |
+
}
|
218 |
+
|
219 |
+
for _, row in df_sampled.iterrows():
|
220 |
+
season = row['Season']
|
221 |
+
color = season_colors.get(season, 'gray') # Default to gray if the season is not recognized
|
222 |
+
folium.CircleMarker(
|
223 |
+
location=[row['Latitude'], row['Longitude']],
|
224 |
+
radius=5,
|
225 |
+
color=color,
|
226 |
+
fill=True,
|
227 |
+
fill_opacity=0.7,
|
228 |
+
tooltip=(f"District: {row['District']}<br>"
|
229 |
+
f"Season: {row['Season']}<br>"
|
230 |
+
f"Area: {row['Area']}<br>"
|
231 |
+
f"Production: {row['Production']}")
|
232 |
+
).add_to(m)
|
233 |
+
|
234 |
+
# Convert the map to HTML format
|
235 |
+
map_html = m._repr_html_()
|
236 |
+
|
237 |
+
# Render the map in the template
|
238 |
+
return render_template('index.html', map_html=map_html, selected_map="Combined Area & Production Heatmaps")
|
239 |
+
|
240 |
+
if __name__ == '__main__':
|
241 |
+
app.run(port=7860,host='0.0.0.0')
|