Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ from flask import Flask, render_template, request
|
|
2 |
import folium
|
3 |
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
|
4 |
import pandas as pd
|
5 |
-
import os
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
@@ -10,33 +9,36 @@ app = Flask(__name__)
|
|
10 |
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
|
11 |
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
|
12 |
|
13 |
-
|
14 |
@app.route('/')
|
15 |
def home():
|
16 |
-
return render_template('index.html', map_html=
|
17 |
-
|
18 |
|
19 |
-
@app.route('/
|
20 |
def production_analysis():
|
21 |
crop_options = df['Crop'].unique().tolist()
|
22 |
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
|
23 |
|
24 |
if not selected_crop:
|
25 |
-
return render_template('index.html', map_html=
|
26 |
crop_options=crop_options, selected_crop=None)
|
27 |
|
28 |
crop_data = df[df['Crop'] == selected_crop]
|
29 |
|
30 |
if crop_data.empty:
|
31 |
-
return render_template('index.html', map_html=
|
32 |
crop_options=crop_options, selected_crop=selected_crop)
|
33 |
|
34 |
time_index = crop_data['Crop_Year'].unique()
|
35 |
-
heatmap_data = [
|
36 |
-
[
|
|
|
|
|
37 |
for year in time_index
|
38 |
]
|
39 |
|
|
|
|
|
|
|
40 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
41 |
heatmap = HeatMapWithTime(
|
42 |
heatmap_data,
|
@@ -47,17 +49,16 @@ def production_analysis():
|
|
47 |
heatmap.add_to(m)
|
48 |
|
49 |
map_html = m._repr_html_()
|
50 |
-
return render_template('index.html', map_html=map_html, selected_map=
|
51 |
crop_options=crop_options, selected_crop=selected_crop)
|
52 |
|
53 |
-
|
54 |
@app.route('/heatmap_analysis')
|
55 |
def heatmap_analysis():
|
56 |
-
global df
|
57 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
58 |
-
fg = folium.FeatureGroup(name=
|
59 |
m.add_child(fg)
|
60 |
-
df_sampled = df.sample(frac=0.005, random_state=42)
|
61 |
for crop in df_sampled['Crop'].unique():
|
62 |
subgroup = FeatureGroupSubGroup(fg, crop)
|
63 |
m.add_child(subgroup)
|
@@ -69,23 +70,14 @@ def heatmap_analysis():
|
|
69 |
folium.LayerControl(collapsed=False).add_to(m)
|
70 |
|
71 |
map_html = m._repr_html_()
|
72 |
-
return render_template('index.html', map_html=map_html, selected_map=
|
73 |
-
|
74 |
|
75 |
@app.route('/season_analysis')
|
76 |
def season_analysis():
|
77 |
-
global df
|
78 |
-
|
79 |
-
# Initialize the map centered over India with an appropriate zoom level
|
80 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
81 |
-
|
82 |
-
# Sample a fraction of the dataframe for performance
|
83 |
df_sampled = df.sample(frac=0.005, random_state=42)
|
84 |
-
|
85 |
-
# Create a dictionary to store top 5 crops for each location
|
86 |
top_crops = {}
|
87 |
-
|
88 |
-
# Collect the top crops for each unique location (Latitude, Longitude)
|
89 |
for _, row in df_sampled.iterrows():
|
90 |
lat_lon = (row['Latitude'], row['Longitude'])
|
91 |
crop = row['Crop']
|
@@ -98,19 +90,16 @@ def season_analysis():
|
|
98 |
top_crops[lat_lon]['Crops'][crop] = 0
|
99 |
top_crops[lat_lon]['Crops'][crop] += production
|
100 |
|
101 |
-
# Limit to top 5 crops for each location
|
102 |
for location, data in top_crops.items():
|
103 |
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
|
104 |
|
105 |
-
# Add scatter points for each unique location with a different color for each season
|
106 |
season_colors = {
|
107 |
'Kharif': 'orange',
|
108 |
'Rabi': 'green',
|
109 |
'Winter': 'blue',
|
110 |
-
'Autumn':'pink',
|
111 |
-
'
|
112 |
-
'
|
113 |
-
'Whole Year':'Red'
|
114 |
}
|
115 |
|
116 |
for (latitude, longitude), data in top_crops.items():
|
@@ -118,35 +107,29 @@ def season_analysis():
|
|
118 |
top_crop_list = data['Crops']
|
119 |
area = data['Area']
|
120 |
|
121 |
-
|
122 |
-
top_crops_str = "<br>".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list])
|
123 |
|
124 |
-
# Add a scatter point to the map for each location
|
125 |
folium.CircleMarker(
|
126 |
location=[latitude, longitude],
|
127 |
-
radius=7,
|
128 |
-
color=season_colors.get(season, 'gray'),
|
129 |
fill=True,
|
130 |
fill_color=season_colors.get(season, 'gray'),
|
131 |
fill_opacity=0.7,
|
132 |
-
tooltip=(f
|
133 |
-
f
|
134 |
-
f
|
135 |
-
f
|
136 |
-
f
|
137 |
).add_to(m)
|
138 |
|
139 |
-
# Convert the map to HTML format for rendering
|
140 |
map_html = m._repr_html_()
|
141 |
-
|
142 |
-
# Render the map in the template
|
143 |
-
return render_template('index.html', map_html=map_html, selected_map="Season Analysis")
|
144 |
-
|
145 |
|
146 |
@app.route('/crop_analysis')
|
147 |
def crop_analysis():
|
148 |
-
global df
|
149 |
-
df_sampled = df.sample(frac=0.005, random_state=42)
|
150 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
151 |
|
152 |
for district in df_sampled['District'].unique():
|
@@ -156,31 +139,24 @@ def crop_analysis():
|
|
156 |
|
157 |
folium.Marker(
|
158 |
location=[lat, lon],
|
159 |
-
popup=f
|
160 |
icon=folium.Icon(icon='arrow-up', color='green')
|
161 |
).add_to(m)
|
162 |
|
163 |
map_html = m._repr_html_()
|
164 |
-
return render_template('index.html', map_html=map_html, selected_map=
|
165 |
-
|
166 |
|
167 |
@app.route('/combined_analysis')
|
168 |
def combined_analysis():
|
169 |
-
global df
|
170 |
-
|
171 |
-
# Sample a fraction of the dataframe for performance
|
172 |
df_sampled = df.sample(frac=0.005, random_state=42)
|
173 |
-
|
174 |
-
# Create the map centered over India with an appropriate zoom level
|
175 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
176 |
|
177 |
-
# Prepare heatmap data for area
|
178 |
area_heat_data = [
|
179 |
[row['Latitude'], row['Longitude'], row['Area']]
|
180 |
for _, row in df_sampled.iterrows()
|
181 |
]
|
182 |
|
183 |
-
# Add the heatmap for area (blue to red: low to high)
|
184 |
HeatMap(
|
185 |
data=area_heat_data,
|
186 |
min_opacity=0.3,
|
@@ -190,13 +166,11 @@ def combined_analysis():
|
|
190 |
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
|
191 |
).add_to(m)
|
192 |
|
193 |
-
# Prepare heatmap data for production
|
194 |
production_heat_data = [
|
195 |
[row['Latitude'], row['Longitude'], row['Production']]
|
196 |
for _, row in df_sampled.iterrows()
|
197 |
]
|
198 |
|
199 |
-
# Add the heatmap for production (green to red: low to high production)
|
200 |
HeatMap(
|
201 |
data=production_heat_data,
|
202 |
min_opacity=0.3,
|
@@ -206,36 +180,31 @@ def combined_analysis():
|
|
206 |
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
|
207 |
).add_to(m)
|
208 |
|
209 |
-
# Scatter plot for different seasons with distinct colors
|
210 |
season_colors = {
|
211 |
'Kharif': 'purple',
|
212 |
'Rabi': 'orange',
|
213 |
-
'
|
214 |
-
'
|
215 |
-
'
|
216 |
-
'Whole Year':'Red'
|
217 |
}
|
218 |
|
219 |
for _, row in df_sampled.iterrows():
|
220 |
season = row['Season']
|
221 |
-
color = season_colors.get(season, 'gray')
|
222 |
folium.CircleMarker(
|
223 |
-
location=[row['Latitude'], row['Longitude']
|
224 |
radius=5,
|
225 |
color=color,
|
226 |
fill=True,
|
227 |
fill_opacity=0.7,
|
228 |
-
tooltip=(f
|
229 |
-
f
|
230 |
-
f
|
231 |
-
f
|
232 |
).add_to(m)
|
233 |
|
234 |
-
# Convert the map to HTML format
|
235 |
map_html = m._repr_html_()
|
236 |
-
|
237 |
-
# Render the map in the template
|
238 |
-
return render_template('index.html', map_html=map_html, selected_map="Combined Area & Production Heatmaps")
|
239 |
|
240 |
if __name__ == '__main__':
|
241 |
-
app.run(port=7860,host='0.0.0.0')
|
|
|
2 |
import folium
|
3 |
from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
|
|
9 |
df = pd.read_csv('final_crop_historic_data_pkjk.csv')
|
10 |
df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude']
|
11 |
|
|
|
12 |
@app.route('/')
|
13 |
def home():
|
14 |
+
return render_template('index.html', map_html='', selected_map='Home')
|
|
|
15 |
|
16 |
+
@app.route('/production_analysis', methods=['GET', 'POST'])
|
17 |
def production_analysis():
|
18 |
crop_options = df['Crop'].unique().tolist()
|
19 |
selected_crop = request.form.get('crop_type') if request.method == 'POST' else None
|
20 |
|
21 |
if not selected_crop:
|
22 |
+
return render_template('index.html', map_html='', selected_map='Production Analysis',
|
23 |
crop_options=crop_options, selected_crop=None)
|
24 |
|
25 |
crop_data = df[df['Crop'] == selected_crop]
|
26 |
|
27 |
if crop_data.empty:
|
28 |
+
return render_template('index.html', map_html='', selected_map='No Data Available',
|
29 |
crop_options=crop_options, selected_crop=selected_crop)
|
30 |
|
31 |
time_index = crop_data['Crop_Year'].unique()
|
32 |
+
heatmap_data = [[
|
33 |
+
[row['Latitude'], row['Longitude']]
|
34 |
+
for _, row in crop_data[crop_data['Crop_Year'] == year].dropna().iterrows()
|
35 |
+
]
|
36 |
for year in time_index
|
37 |
]
|
38 |
|
39 |
+
for year, data in zip(time_index, heatmap_data):
|
40 |
+
print(f'Year: {year}, Data: {data}')
|
41 |
+
|
42 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
43 |
heatmap = HeatMapWithTime(
|
44 |
heatmap_data,
|
|
|
49 |
heatmap.add_to(m)
|
50 |
|
51 |
map_html = m._repr_html_()
|
52 |
+
return render_template('index.html', map_html=map_html, selected_map='Production Heatmap Analysis',
|
53 |
crop_options=crop_options, selected_crop=selected_crop)
|
54 |
|
|
|
55 |
@app.route('/heatmap_analysis')
|
56 |
def heatmap_analysis():
|
57 |
+
global df
|
58 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
59 |
+
fg = folium.FeatureGroup(name='Crops')
|
60 |
m.add_child(fg)
|
61 |
+
df_sampled = df.sample(frac=0.005, random_state=42)
|
62 |
for crop in df_sampled['Crop'].unique():
|
63 |
subgroup = FeatureGroupSubGroup(fg, crop)
|
64 |
m.add_child(subgroup)
|
|
|
70 |
folium.LayerControl(collapsed=False).add_to(m)
|
71 |
|
72 |
map_html = m._repr_html_()
|
73 |
+
return render_template('index.html', map_html=map_html, selected_map='Crop Heatmap Analysis')
|
|
|
74 |
|
75 |
@app.route('/season_analysis')
|
76 |
def season_analysis():
|
77 |
+
global df
|
|
|
|
|
78 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
|
|
|
|
79 |
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
|
|
|
80 |
top_crops = {}
|
|
|
|
|
81 |
for _, row in df_sampled.iterrows():
|
82 |
lat_lon = (row['Latitude'], row['Longitude'])
|
83 |
crop = row['Crop']
|
|
|
90 |
top_crops[lat_lon]['Crops'][crop] = 0
|
91 |
top_crops[lat_lon]['Crops'][crop] += production
|
92 |
|
|
|
93 |
for location, data in top_crops.items():
|
94 |
top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5]
|
95 |
|
|
|
96 |
season_colors = {
|
97 |
'Kharif': 'orange',
|
98 |
'Rabi': 'green',
|
99 |
'Winter': 'blue',
|
100 |
+
'Autumn': 'pink',
|
101 |
+
'Summer': 'yellow',
|
102 |
+
'Whole Year': 'red'
|
|
|
103 |
}
|
104 |
|
105 |
for (latitude, longitude), data in top_crops.items():
|
|
|
107 |
top_crop_list = data['Crops']
|
108 |
area = data['Area']
|
109 |
|
110 |
+
top_crops_str = '<br>'.join([f'{crop[0]}: {crop[1]}' for crop in top_crop_list])
|
|
|
111 |
|
|
|
112 |
folium.CircleMarker(
|
113 |
location=[latitude, longitude],
|
114 |
+
radius=7,
|
115 |
+
color=season_colors.get(season, 'gray'),
|
116 |
fill=True,
|
117 |
fill_color=season_colors.get(season, 'gray'),
|
118 |
fill_opacity=0.7,
|
119 |
+
tooltip=(f'Latitude: {latitude}<br>'
|
120 |
+
f'Longitude: {longitude}<br>'
|
121 |
+
f'Season: {season}<br>'
|
122 |
+
f'Area: {area}<br>'
|
123 |
+
f'Top 5 Crops:<br>{top_crops_str}')
|
124 |
).add_to(m)
|
125 |
|
|
|
126 |
map_html = m._repr_html_()
|
127 |
+
return render_template('index.html', map_html=map_html, selected_map='Season Analysis')
|
|
|
|
|
|
|
128 |
|
129 |
@app.route('/crop_analysis')
|
130 |
def crop_analysis():
|
131 |
+
global df
|
132 |
+
df_sampled = df.sample(frac=0.005, random_state=42)
|
133 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
134 |
|
135 |
for district in df_sampled['District'].unique():
|
|
|
139 |
|
140 |
folium.Marker(
|
141 |
location=[lat, lon],
|
142 |
+
popup=f'<b>District:</b> {district}<br><b>Top 5 Crops:</b> {', '.join(top_crops)}',
|
143 |
icon=folium.Icon(icon='arrow-up', color='green')
|
144 |
).add_to(m)
|
145 |
|
146 |
map_html = m._repr_html_()
|
147 |
+
return render_template('index.html', map_html=map_html, selected_map='District Crop Analysis')
|
|
|
148 |
|
149 |
@app.route('/combined_analysis')
|
150 |
def combined_analysis():
|
151 |
+
global df
|
|
|
|
|
152 |
df_sampled = df.sample(frac=0.005, random_state=42)
|
|
|
|
|
153 |
m = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
|
154 |
|
|
|
155 |
area_heat_data = [
|
156 |
[row['Latitude'], row['Longitude'], row['Area']]
|
157 |
for _, row in df_sampled.iterrows()
|
158 |
]
|
159 |
|
|
|
160 |
HeatMap(
|
161 |
data=area_heat_data,
|
162 |
min_opacity=0.3,
|
|
|
166 |
gradient={0.0: 'blue', 0.5: 'lightblue', 1.0: 'red'}
|
167 |
).add_to(m)
|
168 |
|
|
|
169 |
production_heat_data = [
|
170 |
[row['Latitude'], row['Longitude'], row['Production']]
|
171 |
for _, row in df_sampled.iterrows()
|
172 |
]
|
173 |
|
|
|
174 |
HeatMap(
|
175 |
data=production_heat_data,
|
176 |
min_opacity=0.3,
|
|
|
180 |
gradient={0.0: 'green', 0.5: 'yellow', 1.0: 'red'}
|
181 |
).add_to(m)
|
182 |
|
|
|
183 |
season_colors = {
|
184 |
'Kharif': 'purple',
|
185 |
'Rabi': 'orange',
|
186 |
+
'Winter': 'Yellow',
|
187 |
+
'Summer': 'Green',
|
188 |
+
'Whole Year': 'Red'
|
|
|
189 |
}
|
190 |
|
191 |
for _, row in df_sampled.iterrows():
|
192 |
season = row['Season']
|
193 |
+
color = season_colors.get(season, 'gray')
|
194 |
folium.CircleMarker(
|
195 |
+
location=[row['Latitude'], row['Longitude'],
|
196 |
radius=5,
|
197 |
color=color,
|
198 |
fill=True,
|
199 |
fill_opacity=0.7,
|
200 |
+
tooltip=(f'District: {row['District']}<br>'
|
201 |
+
f'Season: {row['Season']}<br>'
|
202 |
+
f'Area: {row['Area']}<br>'
|
203 |
+
f'Production: {row['Production']}')
|
204 |
).add_to(m)
|
205 |
|
|
|
206 |
map_html = m._repr_html_()
|
207 |
+
return render_template('index.html', map_html=map_html, selected_map='Combined Area & Production Heatmaps')
|
|
|
|
|
208 |
|
209 |
if __name__ == '__main__':
|
210 |
+
app.run(port=7860, host='0.0.0.0')
|