from flask import Flask, render_template, request import folium from folium.plugins import HeatMapWithTime, FeatureGroupSubGroup, HeatMap import pandas as pd import os app = Flask(__name__) # Load the dataset df = pd.read_csv('final_crop_historic_data_pkjk.csv') df.columns = ['State', 'District', 'Crop_Year', 'Season', 'Crop', 'Area', 'Production', 'Latitude', 'Longitude'] @app.route('/') def home(): return render_template('index.html', map_html="", selected_map="Home") @app.route('/prodction_analysis', methods=['GET', 'POST']) def production_analysis(): crop_options = df['Crop'].unique().tolist() selected_crop = request.form.get('crop_type') if request.method == 'POST' else None if not selected_crop: return render_template('index.html', map_html="", selected_map="Production Analysis", crop_options=crop_options, selected_crop=None) crop_data = df[df['Crop'] == selected_crop] if crop_data.empty: return render_template('index.html', map_html="", selected_map="No Data Available", crop_options=crop_options, selected_crop=selected_crop) time_index = crop_data['Crop_Year'].unique() heatmap_data = [ [[row['Latitude'], row['Longitude']] for _, row in crop_data[crop_data['Crop_Year'] == year].iterrows()] for year in time_index ] m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) heatmap = HeatMapWithTime( heatmap_data, index=[str(year) for year in time_index], auto_play=True, max_opacity=0.6 ) heatmap.add_to(m) map_html = m._repr_html_() return render_template('index.html', map_html=map_html, selected_map="Production Heatmap Analysis", crop_options=crop_options, selected_crop=selected_crop) @app.route('/heatmap_analysis') def heatmap_analysis(): global df # Declare df as global m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) fg = folium.FeatureGroup(name="Crops") m.add_child(fg) df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df for crop in df_sampled['Crop'].unique(): subgroup = FeatureGroupSubGroup(fg, crop) m.add_child(subgroup) crop_data = df_sampled[df_sampled['Crop'] == crop] heatmap_data = [[row['Latitude'], row['Longitude']] for _, row in crop_data.iterrows()] HeatMap(heatmap_data).add_to(subgroup) folium.LayerControl(collapsed=False).add_to(m) map_html = m._repr_html_() return render_template('index.html', map_html=map_html, selected_map="Crop Heatmap Analysis") @app.route('/season_analysis') def season_analysis(): global df # Declare df as global # Initialize the map centered over India with an appropriate zoom level m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) # Sample a fraction of the dataframe for performance df_sampled = df.sample(frac=0.005, random_state=42) # Create a dictionary to store top 5 crops for each location top_crops = {} # Collect the top crops for each unique location (Latitude, Longitude) for _, row in df_sampled.iterrows(): lat_lon = (row['Latitude'], row['Longitude']) crop = row['Crop'] production = row['Production'] if lat_lon not in top_crops: top_crops[lat_lon] = {'Season': row['Season'], 'Crops': {}, 'Area': row['Area']} if crop not in top_crops[lat_lon]['Crops']: top_crops[lat_lon]['Crops'][crop] = 0 top_crops[lat_lon]['Crops'][crop] += production # Limit to top 5 crops for each location for location, data in top_crops.items(): top_crops[location]['Crops'] = sorted(data['Crops'].items(), key=lambda x: x[1], reverse=True)[:5] # Add scatter points for each unique location with a different color for each season season_colors = { 'Kharif': 'orange', 'Rabi': 'green', 'Winter': 'blue', 'Autumn':'pink', 'Rabi':'brown', 'Summer':'yellow', 'Whole Year':'Red' } for (latitude, longitude), data in top_crops.items(): season = data['Season'] top_crop_list = data['Crops'] area = data['Area'] # Create a string for the top crops top_crops_str = "
".join([f"{crop[0]}: {crop[1]}" for crop in top_crop_list]) # Add a scatter point to the map for each location folium.CircleMarker( location=[latitude, longitude], radius=7, # Fixed radius for scatter points color=season_colors.get(season, 'gray'), # Use season color or gray if not found fill=True, fill_color=season_colors.get(season, 'gray'), fill_opacity=0.7, tooltip=(f"Latitude: {latitude}
" f"Longitude: {longitude}
" f"Season: {season}
" f"Area: {area}
" f"Top 5 Crops:
{top_crops_str}") ).add_to(m) # Convert the map to HTML format for rendering map_html = m._repr_html_() # Render the map in the template return render_template('index.html', map_html=map_html, selected_map="Season Analysis") @app.route('/crop_analysis') def crop_analysis(): global df # Declare df as global df_sampled = df.sample(frac=0.005, random_state=42) # Use a different variable for sampled df m = folium.Map(location=[20.5937, 78.9629], zoom_start=5) for district in df_sampled['District'].unique(): district_data = df_sampled[df_sampled['District'] == district] top_crops = district_data.groupby('Crop')['Production'].sum().nlargest(5).index.tolist() lat, lon = district_data.iloc[0]['Latitude'], district_data.iloc[0]['Longitude'] folium.Marker( location=[lat, lon], popup=f"District: {district}
Top 5 Crops: {', '.join(top_crops)}", icon=folium.Icon(icon='arrow-up', color='green') ).add_to(m) map_html = m._repr_html_() return render_template('index.html', map_html=map_html, selected_map="District Crop Analysis") if __name__ == '__main__': app.run(port=7860,host='0.0.0.0')