Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,30 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import warnings
|
4 |
warnings.simplefilter("ignore")
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
languages = ["English", "Spanish", "Vietnamese", "French", "Portuguese"]
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
input_text = f"{source_lang}: {text}\n{target_lang}:"
|
14 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
15 |
-
outputs = model.generate(**inputs, max_new_tokens=20)
|
16 |
-
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
-
return translated_text
|
18 |
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
st.
|
22 |
|
23 |
-
source_lang =
|
24 |
-
target_lang =
|
25 |
|
26 |
-
text = st.text_area(f"Enter text in {
|
27 |
|
28 |
if st.button("Translate"):
|
29 |
-
|
30 |
-
|
|
|
31 |
|
|
|
|
|
32 |
|
33 |
if __name__ == "__main__":
|
34 |
main()
|
|
|
3 |
import warnings
|
4 |
warnings.simplefilter("ignore")
|
5 |
|
6 |
+
def main():
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Unbabel/TowerBase-13B-v0.1")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("Unbabel/TowerBase-13B-v0.1", device="cuda" if st.session_state.use_gpu else "cpu", load_in_4bit=True)
|
|
|
|
|
9 |
|
10 |
+
languages = ["English", "Spanish", "Vietnamese", "French", "Portuguese"]
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
st.sidebar.title("Translation App")
|
13 |
+
st.sidebar.write("Choose source and target languages:")
|
14 |
|
15 |
+
source_lang_index = st.sidebar.selectbox("Source Language", languages)
|
16 |
+
target_lang_index = st.sidebar.selectbox("Target Language", languages)
|
17 |
|
18 |
+
source_lang = languages.index(source_lang_index)
|
19 |
+
target_lang = languages.index(target_lang_index)
|
20 |
|
21 |
+
text = st.text_area(f"Enter text in {source_lang_index}", "")
|
22 |
|
23 |
if st.button("Translate"):
|
24 |
+
input_text = f"{source_lang_index}: {text}\n{target_lang_index}:"
|
25 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
26 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
27 |
|
28 |
+
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
st.write(f"Translation in {target_lang_index}: {translated_text}")
|
30 |
|
31 |
if __name__ == "__main__":
|
32 |
main()
|