Spaces:
Sleeping
Sleeping
Create translator_app.py
Browse files- translator_app.py +35 -0
translator_app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
warnings.simplefilter("ignore")
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Unbabel/TowerBase-13B-v0.1")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("Unbabel/TowerBase-13B-v0.1", device_map="auto", load_in_4bit=True)
|
9 |
+
|
10 |
+
languages = ["English", "Spanish", "Vietnamese", "French", "Portuguese"]
|
11 |
+
|
12 |
+
|
13 |
+
def translate_text(source_lang, target_lang, text):
|
14 |
+
input_text = f"{source_lang}: {text}\n{target_lang}:"
|
15 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
16 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
17 |
+
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
return translated_text
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
st.title("Language Translator")
|
23 |
+
|
24 |
+
source_lang = st.selectbox("Choose source language:", languages)
|
25 |
+
target_lang = st.selectbox("Choose target language:", languages)
|
26 |
+
|
27 |
+
text = st.text_area(f"Enter text in {source_lang}:", "")
|
28 |
+
|
29 |
+
if st.button("Translate"):
|
30 |
+
translated_text = translate_text(source_lang, target_lang, text)
|
31 |
+
st.text_area(f"Translation in {target_lang}:", translated_text)
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
main()
|