Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,54 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
def chatbot(question):
|
4 |
to_predict = [
|
5 |
{
|
@@ -17,6 +66,7 @@ def chatbot(question):
|
|
17 |
top_answer = answers[0]['answer'][0]
|
18 |
return top_answer
|
19 |
|
|
|
20 |
iface = gr.Interface(
|
21 |
fn=chatbot,
|
22 |
inputs="text",
|
@@ -26,4 +76,5 @@ iface = gr.Interface(
|
|
26 |
description="Ask a question about the Normans",
|
27 |
)
|
28 |
|
|
|
29 |
iface.launch()
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
from typing import List
|
5 |
import gradio as gr
|
6 |
+
from simpletransformers.question_answering import QuestionAnsweringModel, QuestionAnsweringArgs
|
7 |
+
|
8 |
+
# Load test data
|
9 |
+
with open("test.json", "r") as read_file:
|
10 |
+
test = json.load(read_file)
|
11 |
+
|
12 |
+
# Load train data
|
13 |
+
with open("konbert-export-a07a2fb8c3174.json", "r") as json_file:
|
14 |
+
train_data = json.load(json_file)
|
15 |
+
|
16 |
+
# Adapt the training data
|
17 |
+
adapted_data = []
|
18 |
+
for paragraph in train_data:
|
19 |
+
qas_list = []
|
20 |
+
if "answers" in paragraph and "text" in paragraph["answers"] and "answer_start" in paragraph["answers"]:
|
21 |
+
for i in range(len(paragraph["answers"]["text"])):
|
22 |
+
answer_text = paragraph["answers"]["text"][i].strip()
|
23 |
+
if answer_text:
|
24 |
+
qa_dict = {
|
25 |
+
"id": f"{paragraph['id']}_{i}",
|
26 |
+
"question": paragraph.get("question", ""),
|
27 |
+
"answers": [{"text": answer_text, "answer_start": paragraph["answers"]["answer_start"][i]}]
|
28 |
+
}
|
29 |
+
qas_list.append(qa_dict)
|
30 |
+
|
31 |
+
if qas_list:
|
32 |
+
adapted_data.append({
|
33 |
+
"context": paragraph.get("context", ""),
|
34 |
+
"qas": qas_list
|
35 |
+
})
|
36 |
+
|
37 |
+
# Model training arguments
|
38 |
+
model_args = QuestionAnsweringArgs()
|
39 |
+
model_args.train_batch_size = 16
|
40 |
+
model_args.evaluate_during_training = True
|
41 |
+
model_args.n_best_size = 3
|
42 |
+
model_args.num_train_epochs = 5
|
43 |
+
|
44 |
+
# Model definition
|
45 |
+
model = QuestionAnsweringModel('bert', 'bert-base-uncased', use_cuda=False, args={'overwrite_output_dir': True, 'num_train_epochs': 6})
|
46 |
+
model.train_model(adapted_data, num_train_epochs=6)
|
47 |
+
model.save_model(f"outputs/bert/final_model")
|
48 |
+
|
49 |
+
|
50 |
|
51 |
+
# Gradio interface function
|
52 |
def chatbot(question):
|
53 |
to_predict = [
|
54 |
{
|
|
|
66 |
top_answer = answers[0]['answer'][0]
|
67 |
return top_answer
|
68 |
|
69 |
+
# Gradio interface setup
|
70 |
iface = gr.Interface(
|
71 |
fn=chatbot,
|
72 |
inputs="text",
|
|
|
76 |
description="Ask a question about the Normans",
|
77 |
)
|
78 |
|
79 |
+
# Launch Gradio interface
|
80 |
iface.launch()
|