Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -58,17 +58,25 @@ def get_conversational_chain():
|
|
58 |
|
59 |
|
60 |
def user_input(user_question):
|
61 |
-
embeddings = GoogleGenerativeAIEmbeddings(model
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
docs = new_db.similarity_search(user_question)
|
65 |
|
66 |
chain = get_conversational_chain()
|
67 |
|
68 |
-
|
69 |
response = chain(
|
70 |
-
{"input_documents":docs, "question": user_question}
|
71 |
-
|
|
|
72 |
|
73 |
print(response)
|
74 |
st.write("Reply: ", response["output_text"])
|
|
|
58 |
|
59 |
|
60 |
def user_input(user_question):
|
61 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
62 |
+
|
63 |
+
# Load the FAISS index with safe deserialization
|
64 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=False)
|
65 |
+
if not new_db:
|
66 |
+
# If the index doesn't exist, create it
|
67 |
+
raw_text = get_pdf_text(pdf_docs)
|
68 |
+
text_chunks = get_text_chunks(raw_text)
|
69 |
+
get_vector_store(text_chunks)
|
70 |
+
new_db = FAISS.load_local("faiss_index", embeddings)
|
71 |
+
|
72 |
docs = new_db.similarity_search(user_question)
|
73 |
|
74 |
chain = get_conversational_chain()
|
75 |
|
|
|
76 |
response = chain(
|
77 |
+
{"input_documents": docs, "question": user_question},
|
78 |
+
return_only_outputs=True
|
79 |
+
)
|
80 |
|
81 |
print(response)
|
82 |
st.write("Reply: ", response["output_text"])
|