import os from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain_openai import OpenAI import gradio as gr # Function to read text from a file def read_txt(file_path): with open(file_path, "r") as file: text = file.read() return text # Load text from the specified file file_path = 'lawsofpower.txt' text_file_path = 'lawsofpower.txt' user_query = read_txt(text_file_path) # Set up text processing components char_text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) text_chunks = char_text_splitter.split_text(user_query) openai_api_key = "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" embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) docsearch = FAISS.from_texts(text_chunks, embeddings) llm = OpenAI(openai_api_key=openai_api_key) chain = load_qa_chain(llm, chain_type="stuff") # Define the chatbot interface def chatbot_interface(input_text): docs = docsearch.similarity_search(input_text) response = chain.run(input_documents=docs, question=input_text) return response iface = gr.Interface(fn=chatbot_interface, inputs="text", outputs="text") iface.launch()