RamAnanth1 commited on
Commit
d1de822
·
1 Parent(s): efd6e56

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -4
app.py CHANGED
@@ -14,8 +14,73 @@ whisper_model = whisper.load_model("medium")
14
 
15
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
16
 
17
- def greet(name):
18
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
21
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
16
 
17
+ def transcribe(audio):
18
+
19
+ print("""
20
+
21
+ Sending audio to Whisper ...
22
+
23
+ """)
24
+
25
+ audio = whisper.load_audio(audio)
26
+ audio = whisper.pad_or_trim(audio)
27
+
28
+ mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
29
+
30
+ _, probs = whisper_model.detect_language(mel)
31
+
32
+ transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
33
+ translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
34
+
35
+ transcription = whisper.decode(whisper_model, mel, transcript_options)
36
+ translation = whisper.decode(whisper_model, mel, translate_options)
37
+
38
+ print("Language Spoken: " + transcription.language)
39
+ print("Transcript: " + transcription.text)
40
+ print("Translated: " + translation.text)
41
 
42
+
43
+ return transcription.text
44
+
45
+ def transcribe_upload(audio):
46
+ return transcribe(audio)
47
+
48
+ def transcribe_yt(link):
49
+ yt = YouTube(link)
50
+ path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3")
51
+ return transcribe(path)
52
+
53
+ with gr.Blocks(css = css) as demo:
54
+ gr.Markdown("""
55
+ ## Multi-lingual Transcript Generator
56
+ """)
57
+ gr.HTML('''
58
+ <p style="margin-bottom: 10px">
59
+ Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification.
60
+ </p>
61
+ ''')
62
+ with gr.Column():
63
+ #gr.Markdown(""" ### Record audio """)
64
+ with gr.Tab("Youtube Link"):
65
+ yt_input = gr.Textbox(label = 'Youtube Link')
66
+ transcribe_audio_yt = gr.Button('Transcribe')
67
+
68
+ with gr.Tab("Upload Podcast as File"):
69
+ audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
70
+ transcribe_audio_u = gr.Button('Transcribe')
71
+
72
+ with gr.Row():
73
+ transcript_output = gr.Textbox(label="Transcription in the language spoken", lines = 20)
74
+ summary_output = gr.Textbox(label = "English Summary", lines = 10)
75
+
76
+ transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, summary_output])
77
+ transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output,summary_output])
78
+ gr.HTML('''
79
+ <div class="footer">
80
+ <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
81
+ </p>
82
+ </div>
83
+ ''')
84
+
85
+ demo.queue()
86
+ demo.launch()