import gradio as gr import torch import whisper import requests from pytube import YouTube ### ———————————————————————————————————————— title="Transcript PDF" ### ———————————————————————————————————————— whisper_model = whisper.load_model("medium") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def transcribe(audio): print(""" — Sending audio to Whisper ... — """) audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) _, probs = whisper_model.detect_language(mel) transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) translate_options = whisper.DecodingOptions(task="translate", fp16 = False) transcription = whisper.decode(whisper_model, mel, transcript_options) translation = whisper.decode(whisper_model, mel, translate_options) print("Language Spoken: " + transcription.language) print("Transcript: " + transcription.text) print("Translated: " + translation.text) return transcription.text def transcribe_upload(audio): return transcribe(audio) def transcribe_yt(link): yt = YouTube(link) path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3") return transcribe(path) with gr.Blocks(css = css) as demo: gr.Markdown(""" ## Multi-lingual Transcript Generator """) gr.HTML('''

Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification.

''') with gr.Column(): #gr.Markdown(""" ### Record audio """) with gr.Tab("Youtube Link"): yt_input = gr.Textbox(label = 'Youtube Link') transcribe_audio_yt = gr.Button('Transcribe') with gr.Tab("Upload Podcast as File"): audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath") transcribe_audio_u = gr.Button('Transcribe') with gr.Row(): transcript_output = gr.Textbox(label="Transcription in the language spoken", lines = 20) summary_output = gr.Textbox(label = "English Summary", lines = 10) transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, summary_output]) transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output,summary_output]) gr.HTML(''' ''') demo.queue() demo.launch()