import gradio as gr import torch import whisper from whisper.utils import write_vtt import requests from pytube import YouTube ### ———————————————————————————————————————— title="Transcript PDF" ### ———————————————————————————————————————— whisper_model = whisper.load_model("medium") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def transcribe(audio): print(""" — Sending audio to Whisper ... — """) #audio = whisper.load_audio(audio) #audio = whisper.pad_or_trim(audio) #mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) #_, probs = whisper_model.detect_language(mel) #transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) #translate_options = whisper.DecodingOptions(task="translate", fp16 = False) #transcription = whisper.decode(whisper_model, mel, transcript_options) #translation = whisper.decode(whisper_model, mel, translate_options) result = whisper_model.transcribe(audio) #print("Language Spoken: " + transcription.language) #print("Transcript: " + transcription.text) #print("Translated: " + translation.text) with open('sub.vtt', "w") as f: write_vtt(result["segments"], file=f) return result["text"], "sub.vtt" def transcribe_upload(audio): return transcribe(audio) def transcribe_yt(link): yt = YouTube(link) path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3") return transcribe(path) css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 880px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } """ with gr.Blocks(css = css) as demo: gr.Markdown(""" ## Transcript Generator """) gr.HTML('''

Save Transcripts of videos as PDF with the help of Whisper, which is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification.

''') with gr.Column(): #gr.Markdown(""" ### Record audio """) with gr.Tab("Youtube Link"): yt_input = gr.Textbox(label = 'Youtube Link') transcribe_audio_yt = gr.Button('Transcribe') with gr.Tab("Upload as File"): audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath") transcribe_audio_u = gr.Button('Transcribe') with gr.Row(): transcript_output = gr.Textbox(label="Transcript", lines = 20) transcript_file = gr.File() transcribe_audio_yt.click(transcribe_yt, inputs = yt_input, outputs = [transcript_output, transcript_file]) transcribe_audio_u.click(transcribe_upload, inputs = audio_input_u, outputs = [transcript_output, transcript_file]) gr.HTML(''' ''') demo.queue() demo.launch()