Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import os | |
| import json | |
| import requests | |
| whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2") | |
| #input_message.submit([input_message, history], [input_message, chatbot, history]) | |
| def translate_or_transcribe(audio, task): | |
| text_result = whisper(audio, None, task, fn_index=0) | |
| return text_result | |
| #Streaming endpoint | |
| API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" | |
| def predict(inputs, top_p, temperature, openai_api_key, history=[]): | |
| payload = { | |
| "model": "gpt-3.5-turbo", | |
| "messages": [{"role": "user", "content": f"{inputs}"}], | |
| "temperature" : 1.0, | |
| "top_p":1.0, | |
| "n" : 1, | |
| "stream": True, | |
| "presence_penalty":0, | |
| "frequency_penalty":0, | |
| } | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {openai_api_key}" | |
| } | |
| history.append(inputs) | |
| # make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
| response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
| #response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
| token_counter = 0 | |
| partial_words = "" | |
| counter=0 | |
| for chunk in response.iter_lines(): | |
| if counter == 0: | |
| counter+=1 | |
| continue | |
| counter+=1 | |
| # check whether each line is non-empty | |
| if chunk : | |
| # decode each line as response data is in bytes | |
| if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
| break | |
| #print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]) | |
| partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] | |
| if token_counter == 0: | |
| history.append(" " + partial_words) | |
| else: | |
| history[-1] = partial_words | |
| chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
| token_counter+=1 | |
| yield chat, history # resembles {chatbot: chat, state: history} | |
| def reset_textbox(): | |
| return gr.update(value='') | |
| title = """<h1 align="center">🔥ChatGPT API 🚀Streaming🚀</h1>""" | |
| description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
| ``` | |
| User: <utterance> | |
| Assistant: <utterance> | |
| User: <utterance> | |
| Assistant: <utterance> | |
| ... | |
| ``` | |
| In this app, you can explore the outputs of a 20B large language model. | |
| """ | |
| #<a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate Space with GPU Upgrade for fast Inference & no queue<br> | |
| with gr.Blocks(css = """#col_container {width: 700px; margin-left: auto; margin-right: auto;} | |
| #chatbot {height: 400px; overflow: auto;}""") as demo: | |
| gr.HTML(title) | |
| gr.HTML() | |
| gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPTwithAPI?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') | |
| with gr.Column(elem_id = "col_container"): | |
| openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here") | |
| chatbot = gr.Chatbot(elem_id='chatbot') #c | |
| inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t | |
| state = gr.State([]) #s | |
| b1 = gr.Button() | |
| #inputs, top_p, temperature, top_k, repetition_penalty | |
| with gr.Accordion("Parameters", open=False): | |
| top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
| temperature = gr.Slider( minimum=-0, maximum=5.0, value=0.5, step=0.1, interactive=True, label="Temperature",) | |
| #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) | |
| #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) | |
| inputs.submit( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) | |
| b1.click( predict, [inputs, top_p, temperature, openai_api_key, state], [chatbot, state],) | |
| b1.click(reset_textbox, [], [inputs]) | |
| inputs.submit(reset_textbox, [], [inputs]) | |
| #gr.Markdown(description) | |
| gr.HTML(''' | |
| <p>Note: Please be aware that audio records from iOS devices will not be decoded as expected by Gradio. For the best experience, record your voice from a computer instead of your smartphone ;)</p> | |
| <div class="footer"> | |
| <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> - | |
| <a href="https://chat.openai.com/chat" target="_blank">chatGPT</a> by <a href="https://openai.com/" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
| </p> | |
| </div> | |
| ''') | |
| gr.Markdown("") | |
| demo.queue().launch(debug=True) |