File size: 4,695 Bytes
97d65c2
a9f9937
 
 
 
 
 
 
 
 
97d65c2
066e132
 
c4f2558
 
 
 
 
 
 
e3bc2d2
c4f2558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bc2d2
c4f2558
 
 
e3bc2d2
c26f78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f37d23
c26f78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bc2d2
c4f2558
 
e3bc2d2
 
6f418fd
 
 
 
 
8685cda
6f418fd
 
 
97d65c2
c26f78d
5dd34a8
 
 
5ac9b51
fe6c448
e052f63
 
 
 
8685cda
c4f2558
5dd34a8
c4f2558
5dd34a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
from cadCAD.configuration.utils import config_sim
from cadCAD.configuration import Experiment

from cadCAD.engine import ExecutionMode, ExecutionContext
from cadCAD.engine import Executor

from cadCAD import configs
import pandas as pd
import numpy as np

from seir_model import *

def create_and_run_exp(population):
    #Total Population : population
    initial_state = {
        "S": population-10,
        "E": 10,
        "I":0,
        "R":0
    }
    sys_params = {
        "infection_rate":[1],
        "recovery_rate":[1/14], 
        "exposure_rate":[1/3]
    }
        
    partial_state_update_blocks = [
        {
            "policies":{
                "expsoed_growth":p_exposed,
                "infected_growth":p_infected,
                "recovered_growth":p_recovered,
                
            },
            "variables":{
                "S":s_susceptible,
                "E":s_exposed,
                "I":s_infected,
                "R":s_recovered,
            }
         
        }
    
    ]
    
    del configs[:]
    
    timesteps = 100
    sim_config = config_sim({
      "N":1,
      "T":range(timesteps),
      "M":sys_params  
    })
    
    experiment = Experiment()
    experiment.append_configs(
        sim_configs=sim_config,
        initial_state=initial_state,
        partial_state_update_blocks=partial_state_update_blocks
    )

    exec_context = ExecutionContext()
    simulation = Executor(exec_context=exec_context, configs=experiment.configs)
    return simulation

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 900px;
            margin: auto;
            padding-top: 1.5rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
"""
  
def plot_seir(population):
    simulation = create_and_run_exp(population)
    raw_result, tensor_fields, sessions = simulation.execute()
    result = pd.DataFrame(raw_result)
    pd.options.plotting.backend = "plotly"
    fig = result.plot(
    kind = "line",
    x = "timestep",
    y= ["S","E","I", "R"])
    fig.update_layout(title = "Population Evolution Over Time",
            xaxis_title="Time (Days)",
            yaxis_title="People")
    return fig

with gr.Blocks(css = css) as demo:
    gr.Markdown("""
                ## Epidemic Simulation
            """)
            
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                A cadCAD-based simulation of an outbreak of any epidemic using the SEIR compartmental model
              </p>
              ''')
    population_input = gr.Slider(1000, 100000, value=10000, label = "Population")
    simulate_btn = gr.Button('Run Simulation')
    graph = gr.Plot()
    simulate_btn.click(plot_seir, inputs = population_input, outputs = graph)

demo.launch()