covid_simulation / seir_model.py
RamAnanth1's picture
Update seir_model.py
a863869
import numpy as np
def p_exposed(params, substep, state_history, previous_state):
signal = previous_state["S"]*params["infection_rate"]*previous_state["I"]/(previous_state["S"]+previous_state["E"]+previous_state["I"]+previous_state["R"])
return {"delta_s":np.ceil(signal)}
def p_infected(params, substep, state_history, previous_state):
signal = params["exposure_rate"]*previous_state["E"]
return {"delta_i":np.ceil(signal)}
def p_recovered(params, substep, state_history, previous_state):
signal = params["recovery_rate"]*previous_state["I"]
return {"delta_r":np.ceil(signal)}
def s_susceptible(params, substep, state_history, previous_state, policy_input):
new_S = previous_state["S"] - policy_input["delta_s"]
return ("S", max(new_S,0))
def s_exposed(params, substep, state_history, previous_state, policy_input):
new_E = previous_state["E"] + policy_input["delta_s"] - policy_input["delta_i"]
return ("E", max(new_E,0))
def s_infected(params, substep, state_history, previous_state, policy_input):
new_I = previous_state["I"] + policy_input["delta_i"] - policy_input["delta_r"]
return ("I", max(new_I,0))
def s_recovered(params, substep, state_history, previous_state, policy_input):
new_R = previous_state["R"] + policy_input["delta_r"]
return ("R", max(new_R, 0))