RamAnanth1 commited on
Commit
debfcf8
·
1 Parent(s): 8072598

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import pandas as pd
4
+ from datasets import load_dataset
5
+
6
+
7
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
8
+ device = 'cpu' # if you have a GPU
9
+
10
+ tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large')
11
+ model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large').to(device)
12
+
13
+ def process():
14
+ input_text = "POST: Instacart gave me 50 pounds of limes instead of 5 pounds... what the hell do I do with 50 pounds of limes? I've already donated a bunch and gave a bunch away. I'm planning on making a bunch of lime-themed cocktails, but... jeez. Ceviche? \n\n RESPONSE A: Lime juice, and zest, then freeze in small quantities.\n\n RESPONSE B: Lime marmalade lol\n\n Which response is better? RESPONSE"
15
+ x = tokenizer([input_text], return_tensors='pt').input_ids.to(device)
16
+ y = model.generate(x, max_new_tokens=1)
17
+ return tokenizer.batch_decode(y, skip_special_tokens=True)[0]
18
+
19
+ title = "Compare Instruction Models to see which one is more helpful"
20
+ interface = gr.Interface(fn=process,
21
+ #inputs=[gr.Image(type="pil"), gr.Textbox(label="Question")],
22
+ outputs=[,
23
+ gr.Textbox(label = "Responses")
24
+ ],
25
+ title=title,
26
+ )
27
+
28
+ interface.launch(debug=True)