Spaces:
Runtime error
Runtime error
Commit
Β·
b6b5d48
1
Parent(s):
8fbdfd9
Upload 14 files
Browse files- lvdm/data/webvid.py +188 -0
- lvdm/models/autoencoder.py +202 -0
- lvdm/models/ddpm3d.py +1435 -0
- lvdm/models/modules/attention_temporal.py +399 -0
- lvdm/models/modules/autoencoder_modules.py +596 -0
- lvdm/models/modules/condition_modules.py +40 -0
- lvdm/models/modules/distributions.py +76 -0
- lvdm/models/modules/lora.py +1174 -0
- lvdm/models/modules/openaimodel3d.py +662 -0
- lvdm/models/modules/util.py +348 -0
- lvdm/samplers/ddim.py +267 -0
- lvdm/utils/common_utils.py +132 -0
- lvdm/utils/dist_utils.py +19 -0
- lvdm/utils/saving_utils.py +251 -0
lvdm/data/webvid.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import bisect
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
import omegaconf
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data import Dataset
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from decord import VideoReader, cpu
|
| 12 |
+
import torchvision.transforms._transforms_video as transforms_video
|
| 13 |
+
|
| 14 |
+
class WebVid(Dataset):
|
| 15 |
+
"""
|
| 16 |
+
WebVid Dataset.
|
| 17 |
+
Assumes webvid data is structured as follows.
|
| 18 |
+
Webvid/
|
| 19 |
+
videos/
|
| 20 |
+
000001_000050/ ($page_dir)
|
| 21 |
+
1.mp4 (videoid.mp4)
|
| 22 |
+
...
|
| 23 |
+
5000.mp4
|
| 24 |
+
...
|
| 25 |
+
"""
|
| 26 |
+
def __init__(self,
|
| 27 |
+
meta_path,
|
| 28 |
+
data_dir,
|
| 29 |
+
subsample=None,
|
| 30 |
+
video_length=16,
|
| 31 |
+
resolution=[256, 512],
|
| 32 |
+
frame_stride=1,
|
| 33 |
+
spatial_transform=None,
|
| 34 |
+
crop_resolution=None,
|
| 35 |
+
fps_max=None,
|
| 36 |
+
load_raw_resolution=False,
|
| 37 |
+
fps_schedule=None,
|
| 38 |
+
fs_probs=None,
|
| 39 |
+
bs_per_gpu=None,
|
| 40 |
+
trigger_word='',
|
| 41 |
+
dataname='',
|
| 42 |
+
):
|
| 43 |
+
self.meta_path = meta_path
|
| 44 |
+
self.data_dir = data_dir
|
| 45 |
+
self.subsample = subsample
|
| 46 |
+
self.video_length = video_length
|
| 47 |
+
self.resolution = [resolution, resolution] if isinstance(resolution, int) else resolution
|
| 48 |
+
self.frame_stride = frame_stride
|
| 49 |
+
self.fps_max = fps_max
|
| 50 |
+
self.load_raw_resolution = load_raw_resolution
|
| 51 |
+
self.fs_probs = fs_probs
|
| 52 |
+
self.trigger_word = trigger_word
|
| 53 |
+
self.dataname = dataname
|
| 54 |
+
|
| 55 |
+
self._load_metadata()
|
| 56 |
+
if spatial_transform is not None:
|
| 57 |
+
if spatial_transform == "random_crop":
|
| 58 |
+
self.spatial_transform = transforms_video.RandomCropVideo(crop_resolution)
|
| 59 |
+
elif spatial_transform == "resize_center_crop":
|
| 60 |
+
assert(self.resolution[0] == self.resolution[1])
|
| 61 |
+
self.spatial_transform = transforms.Compose([
|
| 62 |
+
transforms.Resize(resolution),
|
| 63 |
+
transforms_video.CenterCropVideo(resolution),
|
| 64 |
+
])
|
| 65 |
+
else:
|
| 66 |
+
raise NotImplementedError
|
| 67 |
+
else:
|
| 68 |
+
self.spatial_transform = None
|
| 69 |
+
|
| 70 |
+
self.fps_schedule = fps_schedule
|
| 71 |
+
self.bs_per_gpu = bs_per_gpu
|
| 72 |
+
if self.fps_schedule is not None:
|
| 73 |
+
assert(self.bs_per_gpu is not None)
|
| 74 |
+
self.counter = 0
|
| 75 |
+
self.stage_idx = 0
|
| 76 |
+
|
| 77 |
+
def _load_metadata(self):
|
| 78 |
+
metadata = pd.read_csv(self.meta_path)
|
| 79 |
+
if self.subsample is not None:
|
| 80 |
+
metadata = metadata.sample(self.subsample, random_state=0)
|
| 81 |
+
metadata['caption'] = metadata['name']
|
| 82 |
+
del metadata['name']
|
| 83 |
+
self.metadata = metadata
|
| 84 |
+
self.metadata.dropna(inplace=True)
|
| 85 |
+
# self.metadata['caption'] = self.metadata['caption'].str[:350]
|
| 86 |
+
|
| 87 |
+
def _get_video_path(self, sample):
|
| 88 |
+
if self.dataname == "loradata":
|
| 89 |
+
rel_video_fp = str(sample['videoid']) + '.mp4'
|
| 90 |
+
full_video_fp = os.path.join(self.data_dir, rel_video_fp)
|
| 91 |
+
else:
|
| 92 |
+
rel_video_fp = os.path.join(sample['page_dir'], str(sample['videoid']) + '.mp4')
|
| 93 |
+
full_video_fp = os.path.join(self.data_dir, 'videos', rel_video_fp)
|
| 94 |
+
return full_video_fp, rel_video_fp
|
| 95 |
+
|
| 96 |
+
def get_fs_based_on_schedule(self, frame_strides, schedule):
|
| 97 |
+
assert(len(frame_strides) == len(schedule) + 1) # nstage=len_fps_schedule + 1
|
| 98 |
+
global_step = self.counter // self.bs_per_gpu # TODO: support resume.
|
| 99 |
+
stage_idx = bisect.bisect(schedule, global_step)
|
| 100 |
+
frame_stride = frame_strides[stage_idx]
|
| 101 |
+
# log stage change
|
| 102 |
+
if stage_idx != self.stage_idx:
|
| 103 |
+
print(f'fps stage: {stage_idx} start ... new frame stride = {frame_stride}')
|
| 104 |
+
self.stage_idx = stage_idx
|
| 105 |
+
return frame_stride
|
| 106 |
+
|
| 107 |
+
def get_fs_based_on_probs(self, frame_strides, probs):
|
| 108 |
+
assert(len(frame_strides) == len(probs))
|
| 109 |
+
return random.choices(frame_strides, weights=probs)[0]
|
| 110 |
+
|
| 111 |
+
def get_fs_randomly(self, frame_strides):
|
| 112 |
+
return random.choice(frame_strides)
|
| 113 |
+
|
| 114 |
+
def __getitem__(self, index):
|
| 115 |
+
|
| 116 |
+
if isinstance(self.frame_stride, list) or isinstance(self.frame_stride, omegaconf.listconfig.ListConfig):
|
| 117 |
+
if self.fps_schedule is not None:
|
| 118 |
+
frame_stride = self.get_fs_based_on_schedule(self.frame_stride, self.fps_schedule)
|
| 119 |
+
elif self.fs_probs is not None:
|
| 120 |
+
frame_stride = self.get_fs_based_on_probs(self.frame_stride, self.fs_probs)
|
| 121 |
+
else:
|
| 122 |
+
frame_stride = self.get_fs_randomly(self.frame_stride)
|
| 123 |
+
else:
|
| 124 |
+
frame_stride = self.frame_stride
|
| 125 |
+
assert(isinstance(frame_stride, int)), type(frame_stride)
|
| 126 |
+
|
| 127 |
+
while True:
|
| 128 |
+
index = index % len(self.metadata)
|
| 129 |
+
sample = self.metadata.iloc[index]
|
| 130 |
+
video_path, rel_fp = self._get_video_path(sample)
|
| 131 |
+
caption = sample['caption']+self.trigger_word
|
| 132 |
+
|
| 133 |
+
# make reader
|
| 134 |
+
try:
|
| 135 |
+
if self.load_raw_resolution:
|
| 136 |
+
video_reader = VideoReader(video_path, ctx=cpu(0))
|
| 137 |
+
else:
|
| 138 |
+
video_reader = VideoReader(video_path, ctx=cpu(0), width=self.resolution[1], height=self.resolution[0])
|
| 139 |
+
if len(video_reader) < self.video_length:
|
| 140 |
+
print(f"video length ({len(video_reader)}) is smaller than target length({self.video_length})")
|
| 141 |
+
index += 1
|
| 142 |
+
continue
|
| 143 |
+
else:
|
| 144 |
+
pass
|
| 145 |
+
except:
|
| 146 |
+
index += 1
|
| 147 |
+
print(f"Load video failed! path = {video_path}")
|
| 148 |
+
continue
|
| 149 |
+
|
| 150 |
+
# sample strided frames
|
| 151 |
+
all_frames = list(range(0, len(video_reader), frame_stride))
|
| 152 |
+
if len(all_frames) < self.video_length: # recal a max fs
|
| 153 |
+
frame_stride = len(video_reader) // self.video_length
|
| 154 |
+
assert(frame_stride != 0)
|
| 155 |
+
all_frames = list(range(0, len(video_reader), frame_stride))
|
| 156 |
+
|
| 157 |
+
# select a random clip
|
| 158 |
+
rand_idx = random.randint(0, len(all_frames) - self.video_length)
|
| 159 |
+
frame_indices = all_frames[rand_idx:rand_idx+self.video_length]
|
| 160 |
+
try:
|
| 161 |
+
frames = video_reader.get_batch(frame_indices)
|
| 162 |
+
break
|
| 163 |
+
except:
|
| 164 |
+
print(f"Get frames failed! path = {video_path}")
|
| 165 |
+
index += 1
|
| 166 |
+
continue
|
| 167 |
+
|
| 168 |
+
assert(frames.shape[0] == self.video_length),f'{len(frames)}, self.video_length={self.video_length}'
|
| 169 |
+
frames = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w]
|
| 170 |
+
if self.spatial_transform is not None:
|
| 171 |
+
frames = self.spatial_transform(frames)
|
| 172 |
+
if self.resolution is not None:
|
| 173 |
+
assert(frames.shape[2] == self.resolution[0] and frames.shape[3] == self.resolution[1]), f'frames={frames.shape}, self.resolution={self.resolution}'
|
| 174 |
+
frames = (frames / 255 - 0.5) * 2
|
| 175 |
+
|
| 176 |
+
fps_ori = video_reader.get_avg_fps()
|
| 177 |
+
fps_clip = fps_ori // frame_stride
|
| 178 |
+
if self.fps_max is not None and fps_clip > self.fps_max:
|
| 179 |
+
fps_clip = self.fps_max
|
| 180 |
+
|
| 181 |
+
data = {'video': frames, 'caption': caption, 'path': video_path, 'fps': fps_clip, 'frame_stride': frame_stride}
|
| 182 |
+
|
| 183 |
+
if self.fps_schedule is not None:
|
| 184 |
+
self.counter += 1
|
| 185 |
+
return data
|
| 186 |
+
|
| 187 |
+
def __len__(self):
|
| 188 |
+
return len(self.metadata)
|
lvdm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import os
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
|
| 7 |
+
from lvdm.models.modules.autoencoder_modules import Encoder, Decoder
|
| 8 |
+
from lvdm.models.modules.distributions import DiagonalGaussianDistribution
|
| 9 |
+
from lvdm.utils.common_utils import instantiate_from_config
|
| 10 |
+
|
| 11 |
+
class AutoencoderKL(pl.LightningModule):
|
| 12 |
+
def __init__(self,
|
| 13 |
+
ddconfig,
|
| 14 |
+
lossconfig,
|
| 15 |
+
embed_dim,
|
| 16 |
+
ckpt_path=None,
|
| 17 |
+
ignore_keys=[],
|
| 18 |
+
image_key="image",
|
| 19 |
+
colorize_nlabels=None,
|
| 20 |
+
monitor=None,
|
| 21 |
+
test=False,
|
| 22 |
+
logdir=None,
|
| 23 |
+
input_dim=4,
|
| 24 |
+
test_args=None,
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.image_key = image_key
|
| 28 |
+
self.encoder = Encoder(**ddconfig)
|
| 29 |
+
self.decoder = Decoder(**ddconfig)
|
| 30 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 31 |
+
assert ddconfig["double_z"]
|
| 32 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 33 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 34 |
+
self.embed_dim = embed_dim
|
| 35 |
+
self.input_dim = input_dim
|
| 36 |
+
self.test = test
|
| 37 |
+
self.test_args = test_args
|
| 38 |
+
self.logdir = logdir
|
| 39 |
+
if colorize_nlabels is not None:
|
| 40 |
+
assert type(colorize_nlabels)==int
|
| 41 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 42 |
+
if monitor is not None:
|
| 43 |
+
self.monitor = monitor
|
| 44 |
+
if ckpt_path is not None:
|
| 45 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 46 |
+
if self.test:
|
| 47 |
+
self.init_test()
|
| 48 |
+
|
| 49 |
+
def init_test(self,):
|
| 50 |
+
self.test = True
|
| 51 |
+
save_dir = os.path.join(self.logdir, "test")
|
| 52 |
+
if 'ckpt' in self.test_args:
|
| 53 |
+
ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
|
| 54 |
+
self.root = os.path.join(save_dir, ckpt_name)
|
| 55 |
+
else:
|
| 56 |
+
self.root = save_dir
|
| 57 |
+
if 'test_subdir' in self.test_args:
|
| 58 |
+
self.root = os.path.join(save_dir, self.test_args.test_subdir)
|
| 59 |
+
|
| 60 |
+
self.root_zs = os.path.join(self.root, "zs")
|
| 61 |
+
self.root_dec = os.path.join(self.root, "reconstructions")
|
| 62 |
+
self.root_inputs = os.path.join(self.root, "inputs")
|
| 63 |
+
os.makedirs(self.root, exist_ok=True)
|
| 64 |
+
|
| 65 |
+
if self.test_args.save_z:
|
| 66 |
+
os.makedirs(self.root_zs, exist_ok=True)
|
| 67 |
+
if self.test_args.save_reconstruction:
|
| 68 |
+
os.makedirs(self.root_dec, exist_ok=True)
|
| 69 |
+
if self.test_args.save_input:
|
| 70 |
+
os.makedirs(self.root_inputs, exist_ok=True)
|
| 71 |
+
assert(self.test_args is not None)
|
| 72 |
+
self.test_maximum = getattr(self.test_args, 'test_maximum', None) #1500 # 12000/8
|
| 73 |
+
self.count = 0
|
| 74 |
+
self.eval_metrics = {}
|
| 75 |
+
self.decodes = []
|
| 76 |
+
self.save_decode_samples = 2048
|
| 77 |
+
|
| 78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 79 |
+
sd = torch.load(path, map_location="cpu")
|
| 80 |
+
try:
|
| 81 |
+
self._cur_epoch = sd['epoch']
|
| 82 |
+
sd = sd["state_dict"]
|
| 83 |
+
except:
|
| 84 |
+
self._cur_epoch = 'null'
|
| 85 |
+
keys = list(sd.keys())
|
| 86 |
+
for k in keys:
|
| 87 |
+
for ik in ignore_keys:
|
| 88 |
+
if k.startswith(ik):
|
| 89 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 90 |
+
del sd[k]
|
| 91 |
+
self.load_state_dict(sd, strict=False)
|
| 92 |
+
# self.load_state_dict(sd, strict=True)
|
| 93 |
+
print(f"Restored from {path}")
|
| 94 |
+
|
| 95 |
+
def encode(self, x, **kwargs):
|
| 96 |
+
|
| 97 |
+
h = self.encoder(x)
|
| 98 |
+
moments = self.quant_conv(h)
|
| 99 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 100 |
+
return posterior
|
| 101 |
+
|
| 102 |
+
def decode(self, z, **kwargs):
|
| 103 |
+
z = self.post_quant_conv(z)
|
| 104 |
+
dec = self.decoder(z)
|
| 105 |
+
return dec
|
| 106 |
+
|
| 107 |
+
def forward(self, input, sample_posterior=True):
|
| 108 |
+
posterior = self.encode(input)
|
| 109 |
+
if sample_posterior:
|
| 110 |
+
z = posterior.sample()
|
| 111 |
+
else:
|
| 112 |
+
z = posterior.mode()
|
| 113 |
+
dec = self.decode(z)
|
| 114 |
+
return dec, posterior
|
| 115 |
+
|
| 116 |
+
def get_input(self, batch, k):
|
| 117 |
+
x = batch[k]
|
| 118 |
+
# if len(x.shape) == 3:
|
| 119 |
+
# x = x[..., None]
|
| 120 |
+
# if x.dim() == 4:
|
| 121 |
+
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 122 |
+
if x.dim() == 5 and self.input_dim == 4:
|
| 123 |
+
b,c,t,h,w = x.shape
|
| 124 |
+
self.b = b
|
| 125 |
+
self.t = t
|
| 126 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 127 |
+
|
| 128 |
+
return x
|
| 129 |
+
|
| 130 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 131 |
+
inputs = self.get_input(batch, self.image_key)
|
| 132 |
+
reconstructions, posterior = self(inputs)
|
| 133 |
+
|
| 134 |
+
if optimizer_idx == 0:
|
| 135 |
+
# train encoder+decoder+logvar
|
| 136 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 137 |
+
last_layer=self.get_last_layer(), split="train")
|
| 138 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 139 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 140 |
+
return aeloss
|
| 141 |
+
|
| 142 |
+
if optimizer_idx == 1:
|
| 143 |
+
# train the discriminator
|
| 144 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 145 |
+
last_layer=self.get_last_layer(), split="train")
|
| 146 |
+
|
| 147 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 148 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 149 |
+
return discloss
|
| 150 |
+
|
| 151 |
+
def validation_step(self, batch, batch_idx):
|
| 152 |
+
inputs = self.get_input(batch, self.image_key)
|
| 153 |
+
reconstructions, posterior = self(inputs)
|
| 154 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 155 |
+
last_layer=self.get_last_layer(), split="val")
|
| 156 |
+
|
| 157 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 158 |
+
last_layer=self.get_last_layer(), split="val")
|
| 159 |
+
|
| 160 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
| 161 |
+
self.log_dict(log_dict_ae)
|
| 162 |
+
self.log_dict(log_dict_disc)
|
| 163 |
+
return self.log_dict
|
| 164 |
+
|
| 165 |
+
def configure_optimizers(self):
|
| 166 |
+
lr = self.learning_rate
|
| 167 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 168 |
+
list(self.decoder.parameters())+
|
| 169 |
+
list(self.quant_conv.parameters())+
|
| 170 |
+
list(self.post_quant_conv.parameters()),
|
| 171 |
+
lr=lr, betas=(0.5, 0.9))
|
| 172 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 173 |
+
lr=lr, betas=(0.5, 0.9))
|
| 174 |
+
return [opt_ae, opt_disc], []
|
| 175 |
+
|
| 176 |
+
def get_last_layer(self):
|
| 177 |
+
return self.decoder.conv_out.weight
|
| 178 |
+
|
| 179 |
+
@torch.no_grad()
|
| 180 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
| 181 |
+
log = dict()
|
| 182 |
+
x = self.get_input(batch, self.image_key)
|
| 183 |
+
x = x.to(self.device)
|
| 184 |
+
if not only_inputs:
|
| 185 |
+
xrec, posterior = self(x)
|
| 186 |
+
if x.shape[1] > 3:
|
| 187 |
+
# colorize with random projection
|
| 188 |
+
assert xrec.shape[1] > 3
|
| 189 |
+
x = self.to_rgb(x)
|
| 190 |
+
xrec = self.to_rgb(xrec)
|
| 191 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 192 |
+
log["reconstructions"] = xrec
|
| 193 |
+
log["inputs"] = x
|
| 194 |
+
return log
|
| 195 |
+
|
| 196 |
+
def to_rgb(self, x):
|
| 197 |
+
assert self.image_key == "segmentation"
|
| 198 |
+
if not hasattr(self, "colorize"):
|
| 199 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 200 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 201 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 202 |
+
return x
|
lvdm/models/ddpm3d.py
ADDED
|
@@ -0,0 +1,1435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
import itertools
|
| 5 |
+
from functools import partial
|
| 6 |
+
from contextlib import contextmanager
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from einops import rearrange, repeat
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 15 |
+
from torchvision.utils import make_grid
|
| 16 |
+
import pytorch_lightning as pl
|
| 17 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 18 |
+
|
| 19 |
+
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
|
| 20 |
+
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 21 |
+
from lvdm.models.modules.lora import inject_trainable_lora
|
| 22 |
+
from lvdm.samplers.ddim import DDIMSampler
|
| 23 |
+
from lvdm.utils.common_utils import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config, check_istarget
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def disabled_train(self, mode=True):
|
| 27 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 28 |
+
does not change anymore."""
|
| 29 |
+
return self
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 33 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def split_video_to_clips(video, clip_length, drop_left=True):
|
| 37 |
+
video_length = video.shape[2]
|
| 38 |
+
shape = video.shape
|
| 39 |
+
if video_length % clip_length != 0 and drop_left:
|
| 40 |
+
video = video[:, :, :video_length // clip_length * clip_length, :, :]
|
| 41 |
+
print(f'[split_video_to_clips] Drop frames from {shape} to {video.shape}')
|
| 42 |
+
nclips = video_length // clip_length
|
| 43 |
+
clips = rearrange(video, 'b c (nc cl) h w -> (b nc) c cl h w', cl=clip_length, nc=nclips)
|
| 44 |
+
return clips
|
| 45 |
+
|
| 46 |
+
def merge_clips_to_videos(clips, bs):
|
| 47 |
+
nclips = clips.shape[0] // bs
|
| 48 |
+
video = rearrange(clips, '(b nc) c t h w -> b c (nc t) h w', nc=nclips)
|
| 49 |
+
return video
|
| 50 |
+
|
| 51 |
+
class DDPM(pl.LightningModule):
|
| 52 |
+
# classic DDPM with Gaussian diffusion, in pixel space
|
| 53 |
+
def __init__(self,
|
| 54 |
+
unet_config,
|
| 55 |
+
timesteps=1000,
|
| 56 |
+
beta_schedule="linear",
|
| 57 |
+
loss_type="l2",
|
| 58 |
+
ckpt_path=None,
|
| 59 |
+
ignore_keys=[],
|
| 60 |
+
load_only_unet=False,
|
| 61 |
+
monitor="val/loss",
|
| 62 |
+
use_ema=True,
|
| 63 |
+
first_stage_key="image",
|
| 64 |
+
image_size=256,
|
| 65 |
+
video_length=None,
|
| 66 |
+
channels=3,
|
| 67 |
+
log_every_t=100,
|
| 68 |
+
clip_denoised=True,
|
| 69 |
+
linear_start=1e-4,
|
| 70 |
+
linear_end=2e-2,
|
| 71 |
+
cosine_s=8e-3,
|
| 72 |
+
given_betas=None,
|
| 73 |
+
original_elbo_weight=0.,
|
| 74 |
+
v_posterior=0.,
|
| 75 |
+
l_simple_weight=1.,
|
| 76 |
+
conditioning_key=None,
|
| 77 |
+
parameterization="eps",
|
| 78 |
+
scheduler_config=None,
|
| 79 |
+
learn_logvar=False,
|
| 80 |
+
logvar_init=0.,
|
| 81 |
+
*args, **kwargs
|
| 82 |
+
):
|
| 83 |
+
super().__init__()
|
| 84 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
| 85 |
+
self.parameterization = parameterization
|
| 86 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 87 |
+
self.cond_stage_model = None
|
| 88 |
+
self.clip_denoised = clip_denoised
|
| 89 |
+
self.log_every_t = log_every_t
|
| 90 |
+
self.first_stage_key = first_stage_key
|
| 91 |
+
self.image_size = image_size # try conv?
|
| 92 |
+
|
| 93 |
+
if isinstance(self.image_size, int):
|
| 94 |
+
self.image_size = [self.image_size, self.image_size]
|
| 95 |
+
self.channels = channels
|
| 96 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 97 |
+
self.conditioning_key = conditioning_key # also register conditioning_key in diffusion
|
| 98 |
+
|
| 99 |
+
self.temporal_length = video_length if video_length is not None else unet_config.params.temporal_length
|
| 100 |
+
count_params(self.model, verbose=True)
|
| 101 |
+
self.use_ema = use_ema
|
| 102 |
+
|
| 103 |
+
self.use_scheduler = scheduler_config is not None
|
| 104 |
+
if self.use_scheduler:
|
| 105 |
+
self.scheduler_config = scheduler_config
|
| 106 |
+
|
| 107 |
+
self.v_posterior = v_posterior
|
| 108 |
+
self.original_elbo_weight = original_elbo_weight
|
| 109 |
+
self.l_simple_weight = l_simple_weight
|
| 110 |
+
|
| 111 |
+
if monitor is not None:
|
| 112 |
+
self.monitor = monitor
|
| 113 |
+
if ckpt_path is not None:
|
| 114 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
| 115 |
+
|
| 116 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
| 117 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 118 |
+
|
| 119 |
+
self.loss_type = loss_type
|
| 120 |
+
|
| 121 |
+
self.learn_logvar = learn_logvar
|
| 122 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 123 |
+
if self.learn_logvar:
|
| 124 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 125 |
+
|
| 126 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 127 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 128 |
+
if exists(given_betas):
|
| 129 |
+
betas = given_betas
|
| 130 |
+
else:
|
| 131 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
| 132 |
+
cosine_s=cosine_s)
|
| 133 |
+
alphas = 1. - betas
|
| 134 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 135 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 136 |
+
|
| 137 |
+
timesteps, = betas.shape
|
| 138 |
+
self.num_timesteps = int(timesteps)
|
| 139 |
+
self.linear_start = linear_start
|
| 140 |
+
self.linear_end = linear_end
|
| 141 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 142 |
+
|
| 143 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 144 |
+
|
| 145 |
+
self.register_buffer('betas', to_torch(betas))
|
| 146 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 147 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 148 |
+
|
| 149 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 150 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 151 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 152 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 153 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 154 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 155 |
+
|
| 156 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 157 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
| 158 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
| 159 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 160 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 161 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 162 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 163 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
| 164 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
| 165 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
| 166 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
| 167 |
+
|
| 168 |
+
if self.parameterization == "eps":
|
| 169 |
+
lvlb_weights = self.betas ** 2 / (
|
| 170 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
| 171 |
+
elif self.parameterization == "x0":
|
| 172 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 173 |
+
else:
|
| 174 |
+
raise NotImplementedError("mu not supported")
|
| 175 |
+
# TODO how to choose this term
|
| 176 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 177 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
| 178 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 179 |
+
|
| 180 |
+
@contextmanager
|
| 181 |
+
def ema_scope(self, context=None):
|
| 182 |
+
if self.use_ema:
|
| 183 |
+
self.model_ema.store(self.model.parameters())
|
| 184 |
+
self.model_ema.copy_to(self.model)
|
| 185 |
+
if context is not None:
|
| 186 |
+
print(f"{context}: Switched to EMA weights")
|
| 187 |
+
try:
|
| 188 |
+
yield None
|
| 189 |
+
finally:
|
| 190 |
+
if self.use_ema:
|
| 191 |
+
self.model_ema.restore(self.model.parameters())
|
| 192 |
+
if context is not None:
|
| 193 |
+
print(f"{context}: Restored training weights")
|
| 194 |
+
|
| 195 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 196 |
+
sd = torch.load(path, map_location="cpu")
|
| 197 |
+
if "state_dict" in list(sd.keys()):
|
| 198 |
+
sd = sd["state_dict"]
|
| 199 |
+
keys = list(sd.keys())
|
| 200 |
+
for k in keys:
|
| 201 |
+
for ik in ignore_keys:
|
| 202 |
+
if k.startswith(ik) or (ik.startswith('**') and ik.split('**')[-1] in k):
|
| 203 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 204 |
+
del sd[k]
|
| 205 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 206 |
+
sd, strict=False)
|
| 207 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 208 |
+
if len(missing) > 0:
|
| 209 |
+
print(f"Missing Keys: {missing}")
|
| 210 |
+
if len(unexpected) > 0:
|
| 211 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 212 |
+
|
| 213 |
+
def q_mean_variance(self, x_start, t):
|
| 214 |
+
"""
|
| 215 |
+
Get the distribution q(x_t | x_0).
|
| 216 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 217 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 218 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 219 |
+
"""
|
| 220 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
| 221 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 222 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
| 223 |
+
return mean, variance, log_variance
|
| 224 |
+
|
| 225 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 226 |
+
return (
|
| 227 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
| 228 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
def q_posterior(self, x_start, x_t, t):
|
| 232 |
+
posterior_mean = (
|
| 233 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
| 234 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 235 |
+
)
|
| 236 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 237 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
| 238 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 239 |
+
|
| 240 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 241 |
+
model_out = self.model(x, t)
|
| 242 |
+
if self.parameterization == "eps":
|
| 243 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 244 |
+
elif self.parameterization == "x0":
|
| 245 |
+
x_recon = model_out
|
| 246 |
+
if clip_denoised:
|
| 247 |
+
x_recon.clamp_(-1., 1.)
|
| 248 |
+
|
| 249 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 250 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 251 |
+
|
| 252 |
+
@torch.no_grad()
|
| 253 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 254 |
+
b, *_, device = *x.shape, x.device
|
| 255 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
| 256 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 257 |
+
# no noise when t == 0
|
| 258 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 259 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 260 |
+
|
| 261 |
+
@torch.no_grad()
|
| 262 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 263 |
+
device = self.betas.device
|
| 264 |
+
b = shape[0]
|
| 265 |
+
img = torch.randn(shape, device=device)
|
| 266 |
+
intermediates = [img]
|
| 267 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
| 268 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
| 269 |
+
clip_denoised=self.clip_denoised)
|
| 270 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 271 |
+
intermediates.append(img)
|
| 272 |
+
if return_intermediates:
|
| 273 |
+
return img, intermediates
|
| 274 |
+
return img
|
| 275 |
+
|
| 276 |
+
@torch.no_grad()
|
| 277 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 278 |
+
channels = self.channels
|
| 279 |
+
video_length = self.total_length
|
| 280 |
+
size = (batch_size, channels, video_length, *self.image_size)
|
| 281 |
+
return self.p_sample_loop(size,
|
| 282 |
+
return_intermediates=return_intermediates)
|
| 283 |
+
|
| 284 |
+
def q_sample(self, x_start, t, noise=None):
|
| 285 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 286 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
| 287 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
| 288 |
+
|
| 289 |
+
def get_loss(self, pred, target, mean=True, mask=None):
|
| 290 |
+
if self.loss_type == 'l1':
|
| 291 |
+
loss = (target - pred).abs()
|
| 292 |
+
if mean:
|
| 293 |
+
loss = loss.mean()
|
| 294 |
+
elif self.loss_type == 'l2':
|
| 295 |
+
if mean:
|
| 296 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
| 297 |
+
else:
|
| 298 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
| 299 |
+
else:
|
| 300 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
| 301 |
+
if mask is not None:
|
| 302 |
+
assert(mean is False)
|
| 303 |
+
assert(loss.shape[2:] == mask.shape[2:]) #thw need be the same
|
| 304 |
+
loss = loss * mask
|
| 305 |
+
return loss
|
| 306 |
+
|
| 307 |
+
def p_losses(self, x_start, t, noise=None):
|
| 308 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 309 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 310 |
+
model_out = self.model(x_noisy, t)
|
| 311 |
+
|
| 312 |
+
loss_dict = {}
|
| 313 |
+
if self.parameterization == "eps":
|
| 314 |
+
target = noise
|
| 315 |
+
elif self.parameterization == "x0":
|
| 316 |
+
target = x_start
|
| 317 |
+
else:
|
| 318 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
| 319 |
+
|
| 320 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3, 4])
|
| 321 |
+
|
| 322 |
+
log_prefix = 'train' if self.training else 'val'
|
| 323 |
+
|
| 324 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
| 325 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
| 326 |
+
|
| 327 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
| 328 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
| 329 |
+
|
| 330 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
| 331 |
+
|
| 332 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
| 333 |
+
|
| 334 |
+
return loss, loss_dict
|
| 335 |
+
|
| 336 |
+
def forward(self, x, *args, **kwargs):
|
| 337 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 338 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 339 |
+
|
| 340 |
+
def get_input(self, batch, k):
|
| 341 |
+
x = batch[k]
|
| 342 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 343 |
+
return x
|
| 344 |
+
|
| 345 |
+
def shared_step(self, batch):
|
| 346 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 347 |
+
loss, loss_dict = self(x)
|
| 348 |
+
return loss, loss_dict
|
| 349 |
+
|
| 350 |
+
def training_step(self, batch, batch_idx):
|
| 351 |
+
loss, loss_dict = self.shared_step(batch)
|
| 352 |
+
|
| 353 |
+
self.log_dict(loss_dict, prog_bar=True,
|
| 354 |
+
logger=True, on_step=True, on_epoch=True)
|
| 355 |
+
|
| 356 |
+
self.log("global_step", self.global_step,
|
| 357 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 358 |
+
|
| 359 |
+
if self.use_scheduler:
|
| 360 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 361 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 362 |
+
|
| 363 |
+
if self.log_time:
|
| 364 |
+
total_train_time = (time.time() - self.start_time) / (3600*24)
|
| 365 |
+
avg_step_time = (time.time() - self.start_time) / (self.global_step + 1)
|
| 366 |
+
left_time_2w_step = (20000-self.global_step -1) * avg_step_time / (3600*24)
|
| 367 |
+
left_time_5w_step = (50000-self.global_step -1) * avg_step_time / (3600*24)
|
| 368 |
+
with open(self.logger_path, 'w') as f:
|
| 369 |
+
print(f'total_train_time = {total_train_time:.1f} days \n\
|
| 370 |
+
total_train_step = {self.global_step + 1} steps \n\
|
| 371 |
+
left_time_2w_step = {left_time_2w_step:.1f} days \n\
|
| 372 |
+
left_time_5w_step = {left_time_5w_step:.1f} days', file=f)
|
| 373 |
+
return loss
|
| 374 |
+
|
| 375 |
+
@torch.no_grad()
|
| 376 |
+
def validation_step(self, batch, batch_idx):
|
| 377 |
+
# _, loss_dict_no_ema = self.shared_step_validate(batch)
|
| 378 |
+
# with self.ema_scope():
|
| 379 |
+
# _, loss_dict_ema = self.shared_step_validate(batch)
|
| 380 |
+
# loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
| 381 |
+
# self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 382 |
+
# self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 383 |
+
if (self.global_step) % self.val_fvd_interval == 0 and self.global_step != 0:
|
| 384 |
+
print(f'sample for fvd...')
|
| 385 |
+
self.log_images_kwargs = {
|
| 386 |
+
'inpaint': False,
|
| 387 |
+
'plot_diffusion_rows': False,
|
| 388 |
+
'plot_progressive_rows': False,
|
| 389 |
+
'ddim_steps': 50,
|
| 390 |
+
'unconditional_guidance_scale': 15.0,
|
| 391 |
+
}
|
| 392 |
+
torch.cuda.empty_cache()
|
| 393 |
+
logs = self.log_images(batch, **self.log_images_kwargs)
|
| 394 |
+
self.log("batch_idx", batch_idx,
|
| 395 |
+
prog_bar=True, on_step=True, on_epoch=False)
|
| 396 |
+
return {'real': logs['inputs'], 'fake': logs['samples'], 'conditioning_txt_img': logs['conditioning_txt_img']}
|
| 397 |
+
|
| 398 |
+
def get_condition_validate(self, prompt):
|
| 399 |
+
""" text embd
|
| 400 |
+
"""
|
| 401 |
+
if isinstance(prompt, str):
|
| 402 |
+
prompt = [prompt]
|
| 403 |
+
c = self.get_learned_conditioning(prompt)
|
| 404 |
+
bs = c.shape[0]
|
| 405 |
+
|
| 406 |
+
return c
|
| 407 |
+
|
| 408 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 409 |
+
if self.use_ema:
|
| 410 |
+
self.model_ema(self.model)
|
| 411 |
+
|
| 412 |
+
def training_epoch_end(self, outputs):
|
| 413 |
+
|
| 414 |
+
if (self.current_epoch == 0) or self.resume_new_epoch == 0:
|
| 415 |
+
self.epoch_start_time = time.time()
|
| 416 |
+
self.current_epoch_time = 0
|
| 417 |
+
self.total_time = 0
|
| 418 |
+
self.epoch_time_avg = 0
|
| 419 |
+
else:
|
| 420 |
+
self.current_epoch_time = time.time() - self.epoch_start_time
|
| 421 |
+
self.epoch_start_time = time.time()
|
| 422 |
+
self.total_time += self.current_epoch_time
|
| 423 |
+
self.epoch_time_avg = self.total_time / self.current_epoch
|
| 424 |
+
self.resume_new_epoch += 1
|
| 425 |
+
epoch_avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
|
| 426 |
+
|
| 427 |
+
self.log('train/epoch/loss', epoch_avg_loss, logger=True, on_epoch=True)
|
| 428 |
+
self.log('train/epoch/idx', self.current_epoch, logger=True, on_epoch=True)
|
| 429 |
+
self.log('train/epoch/time', self.current_epoch_time, logger=True, on_epoch=True)
|
| 430 |
+
self.log('train/epoch/time_avg', self.epoch_time_avg, logger=True, on_epoch=True)
|
| 431 |
+
self.log('train/epoch/time_avg_min', self.epoch_time_avg / 60, logger=True, on_epoch=True)
|
| 432 |
+
|
| 433 |
+
def _get_rows_from_list(self, samples):
|
| 434 |
+
n_imgs_per_row = len(samples)
|
| 435 |
+
denoise_grid = rearrange(samples, 'n b c t h w -> b n c t h w')
|
| 436 |
+
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
|
| 437 |
+
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
|
| 438 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 439 |
+
return denoise_grid
|
| 440 |
+
|
| 441 |
+
@torch.no_grad()
|
| 442 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None,
|
| 443 |
+
plot_diffusion_rows=True, plot_denoise_rows=True, **kwargs):
|
| 444 |
+
""" log images for DDPM """
|
| 445 |
+
log = dict()
|
| 446 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 447 |
+
N = min(x.shape[0], N)
|
| 448 |
+
n_row = min(x.shape[0], n_row)
|
| 449 |
+
x = x.to(self.device)[:N]
|
| 450 |
+
log["inputs"] = x
|
| 451 |
+
if 'fps' in batch:
|
| 452 |
+
log['fps'] = batch['fps']
|
| 453 |
+
|
| 454 |
+
if plot_diffusion_rows:
|
| 455 |
+
# get diffusion row
|
| 456 |
+
diffusion_row = list()
|
| 457 |
+
x_start = x[:n_row]
|
| 458 |
+
|
| 459 |
+
for t in range(self.num_timesteps):
|
| 460 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 461 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 462 |
+
t = t.to(self.device).long()
|
| 463 |
+
noise = torch.randn_like(x_start)
|
| 464 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 465 |
+
diffusion_row.append(x_noisy)
|
| 466 |
+
|
| 467 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
| 468 |
+
|
| 469 |
+
if sample:
|
| 470 |
+
# get denoise row
|
| 471 |
+
with self.ema_scope("Plotting"):
|
| 472 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
| 473 |
+
|
| 474 |
+
log["samples"] = samples
|
| 475 |
+
if plot_denoise_rows:
|
| 476 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
| 477 |
+
|
| 478 |
+
if return_keys:
|
| 479 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 480 |
+
return log
|
| 481 |
+
else:
|
| 482 |
+
return {key: log[key] for key in return_keys}
|
| 483 |
+
return log
|
| 484 |
+
|
| 485 |
+
def configure_optimizers(self):
|
| 486 |
+
lr = self.learning_rate
|
| 487 |
+
params = list(self.model.parameters())
|
| 488 |
+
if self.learn_logvar:
|
| 489 |
+
params = params + [self.logvar]
|
| 490 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 491 |
+
return opt
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
class LatentDiffusion(DDPM):
|
| 495 |
+
"""main class"""
|
| 496 |
+
def __init__(self,
|
| 497 |
+
first_stage_config,
|
| 498 |
+
cond_stage_config,
|
| 499 |
+
num_timesteps_cond=None,
|
| 500 |
+
cond_stage_key="image",
|
| 501 |
+
cond_stage_trainable=False,
|
| 502 |
+
concat_mode=True,
|
| 503 |
+
cond_stage_forward=None,
|
| 504 |
+
conditioning_key=None,
|
| 505 |
+
scale_factor=1.0,
|
| 506 |
+
scale_by_std=False,
|
| 507 |
+
encoder_type="2d",
|
| 508 |
+
shift_factor=0.0,
|
| 509 |
+
split_clips=True,
|
| 510 |
+
downfactor_t=None,
|
| 511 |
+
clip_length=None,
|
| 512 |
+
only_model=False,
|
| 513 |
+
lora_args={},
|
| 514 |
+
*args, **kwargs):
|
| 515 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 516 |
+
self.scale_by_std = scale_by_std
|
| 517 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
| 518 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 519 |
+
|
| 520 |
+
if conditioning_key is None:
|
| 521 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
| 522 |
+
if cond_stage_config == '__is_unconditional__':
|
| 523 |
+
conditioning_key = None
|
| 524 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 525 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 526 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 527 |
+
self.concat_mode = concat_mode
|
| 528 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 529 |
+
self.cond_stage_key = cond_stage_key
|
| 530 |
+
try:
|
| 531 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 532 |
+
except:
|
| 533 |
+
self.num_downs = 0
|
| 534 |
+
if not scale_by_std:
|
| 535 |
+
self.scale_factor = scale_factor
|
| 536 |
+
else:
|
| 537 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
| 538 |
+
self.instantiate_first_stage(first_stage_config)
|
| 539 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 540 |
+
self.cond_stage_forward = cond_stage_forward
|
| 541 |
+
self.clip_denoised = False
|
| 542 |
+
self.bbox_tokenizer = None
|
| 543 |
+
self.cond_stage_config = cond_stage_config
|
| 544 |
+
self.first_stage_config = first_stage_config
|
| 545 |
+
self.encoder_type = encoder_type
|
| 546 |
+
assert(encoder_type in ["2d", "3d"])
|
| 547 |
+
self.restarted_from_ckpt = False
|
| 548 |
+
self.shift_factor = shift_factor
|
| 549 |
+
if ckpt_path is not None:
|
| 550 |
+
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
|
| 551 |
+
self.restarted_from_ckpt = True
|
| 552 |
+
self.split_clips = split_clips
|
| 553 |
+
self.downfactor_t = downfactor_t
|
| 554 |
+
self.clip_length = clip_length
|
| 555 |
+
# lora related args
|
| 556 |
+
self.inject_unet = getattr(lora_args, "inject_unet", False)
|
| 557 |
+
self.inject_clip = getattr(lora_args, "inject_clip", False)
|
| 558 |
+
self.inject_unet_key_word = getattr(lora_args, "inject_unet_key_word", None)
|
| 559 |
+
self.inject_clip_key_word = getattr(lora_args, "inject_clip_key_word", None)
|
| 560 |
+
self.lora_rank = getattr(lora_args, "lora_rank", 4)
|
| 561 |
+
|
| 562 |
+
def make_cond_schedule(self, ):
|
| 563 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
| 564 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
| 565 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
| 566 |
+
|
| 567 |
+
def inject_lora(self, lora_scale=1.0):
|
| 568 |
+
if self.inject_unet:
|
| 569 |
+
self.lora_require_grad_params, self.lora_names = inject_trainable_lora(self.model, self.inject_unet_key_word,
|
| 570 |
+
r=self.lora_rank,
|
| 571 |
+
scale=lora_scale
|
| 572 |
+
)
|
| 573 |
+
if self.inject_clip:
|
| 574 |
+
self.lora_require_grad_params_clip, self.lora_names_clip = inject_trainable_lora(self.cond_stage_model, self.inject_clip_key_word,
|
| 575 |
+
r=self.lora_rank,
|
| 576 |
+
scale=lora_scale
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
@rank_zero_only
|
| 580 |
+
@torch.no_grad()
|
| 581 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
|
| 582 |
+
# only for very first batch, reset the self.scale_factor
|
| 583 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
| 584 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
| 585 |
+
# set rescale weight to 1./std of encodings
|
| 586 |
+
print("### USING STD-RESCALING ###")
|
| 587 |
+
x = super().get_input(batch, self.first_stage_key)
|
| 588 |
+
x = x.to(self.device)
|
| 589 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 590 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 591 |
+
del self.scale_factor
|
| 592 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
| 593 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
| 594 |
+
print("### USING STD-RESCALING ###")
|
| 595 |
+
print(f"std={z.flatten().std()}")
|
| 596 |
+
|
| 597 |
+
def register_schedule(self,
|
| 598 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 599 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 600 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
| 601 |
+
|
| 602 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 603 |
+
if self.shorten_cond_schedule:
|
| 604 |
+
self.make_cond_schedule()
|
| 605 |
+
|
| 606 |
+
def instantiate_first_stage(self, config):
|
| 607 |
+
model = instantiate_from_config(config)
|
| 608 |
+
self.first_stage_model = model.eval()
|
| 609 |
+
self.first_stage_model.train = disabled_train
|
| 610 |
+
for param in self.first_stage_model.parameters():
|
| 611 |
+
param.requires_grad = False
|
| 612 |
+
|
| 613 |
+
def instantiate_cond_stage(self, config):
|
| 614 |
+
if config is None:
|
| 615 |
+
self.cond_stage_model = None
|
| 616 |
+
return
|
| 617 |
+
if not self.cond_stage_trainable:
|
| 618 |
+
if config == "__is_first_stage__":
|
| 619 |
+
print("Using first stage also as cond stage.")
|
| 620 |
+
self.cond_stage_model = self.first_stage_model
|
| 621 |
+
elif config == "__is_unconditional__":
|
| 622 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 623 |
+
self.cond_stage_model = None
|
| 624 |
+
else:
|
| 625 |
+
model = instantiate_from_config(config)
|
| 626 |
+
self.cond_stage_model = model.eval()
|
| 627 |
+
self.cond_stage_model.train = disabled_train
|
| 628 |
+
for param in self.cond_stage_model.parameters():
|
| 629 |
+
param.requires_grad = False
|
| 630 |
+
else:
|
| 631 |
+
assert config != '__is_first_stage__'
|
| 632 |
+
assert config != '__is_unconditional__'
|
| 633 |
+
model = instantiate_from_config(config)
|
| 634 |
+
self.cond_stage_model = model
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
def get_first_stage_encoding(self, encoder_posterior, noise=None):
|
| 638 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 639 |
+
z = encoder_posterior.sample(noise=noise)
|
| 640 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 641 |
+
z = encoder_posterior
|
| 642 |
+
else:
|
| 643 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
| 644 |
+
z = self.scale_factor * (z + self.shift_factor)
|
| 645 |
+
return z
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
def get_learned_conditioning(self, c):
|
| 649 |
+
if self.cond_stage_forward is None:
|
| 650 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
| 651 |
+
c = self.cond_stage_model.encode(c)
|
| 652 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 653 |
+
c = c.mode()
|
| 654 |
+
else:
|
| 655 |
+
c = self.cond_stage_model(c)
|
| 656 |
+
else:
|
| 657 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 658 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 659 |
+
return c
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
@torch.no_grad()
|
| 663 |
+
def get_condition(self, batch, x, bs, force_c_encode, k, cond_key, is_imgs=False):
|
| 664 |
+
is_conditional = self.model.conditioning_key is not None # crossattn
|
| 665 |
+
if is_conditional:
|
| 666 |
+
if cond_key is None:
|
| 667 |
+
cond_key = self.cond_stage_key
|
| 668 |
+
|
| 669 |
+
# get condition batch of different condition type
|
| 670 |
+
if cond_key != self.first_stage_key:
|
| 671 |
+
assert(cond_key in ["caption", "txt"])
|
| 672 |
+
xc = batch[cond_key]
|
| 673 |
+
else:
|
| 674 |
+
xc = x
|
| 675 |
+
|
| 676 |
+
# if static video
|
| 677 |
+
if self.static_video:
|
| 678 |
+
xc_ = [c + ' (static)' for c in xc]
|
| 679 |
+
xc = xc_
|
| 680 |
+
|
| 681 |
+
# get learned condition.
|
| 682 |
+
# can directly skip it: c = xc
|
| 683 |
+
if self.cond_stage_config is not None and (not self.cond_stage_trainable or force_c_encode):
|
| 684 |
+
if isinstance(xc, torch.Tensor):
|
| 685 |
+
xc = xc.to(self.device)
|
| 686 |
+
c = self.get_learned_conditioning(xc)
|
| 687 |
+
else:
|
| 688 |
+
c = xc
|
| 689 |
+
|
| 690 |
+
if self.classfier_free_guidance:
|
| 691 |
+
if cond_key in ['caption', "txt"] and self.uncond_type == 'empty_seq':
|
| 692 |
+
for i, ci in enumerate(c):
|
| 693 |
+
if random.random() < self.prob:
|
| 694 |
+
c[i] = ""
|
| 695 |
+
elif cond_key == 'class_label' and self.uncond_type == 'zero_embed':
|
| 696 |
+
pass
|
| 697 |
+
elif cond_key == 'class_label' and self.uncond_type == 'learned_embed':
|
| 698 |
+
import pdb;pdb.set_trace()
|
| 699 |
+
for i, ci in enumerate(c):
|
| 700 |
+
if random.random() < self.prob:
|
| 701 |
+
c[i]['class_label'] = self.n_classes
|
| 702 |
+
|
| 703 |
+
else:
|
| 704 |
+
raise NotImplementedError
|
| 705 |
+
|
| 706 |
+
if self.zero_cond_embed:
|
| 707 |
+
import pdb;pdb.set_trace()
|
| 708 |
+
c = torch.zeros_like(c)
|
| 709 |
+
|
| 710 |
+
# process c
|
| 711 |
+
if bs is not None:
|
| 712 |
+
if (is_imgs and not self.static_video):
|
| 713 |
+
c = c[:bs*self.temporal_length] # each random img (in T axis) has a corresponding prompt
|
| 714 |
+
else:
|
| 715 |
+
c = c[:bs]
|
| 716 |
+
|
| 717 |
+
else:
|
| 718 |
+
c = None
|
| 719 |
+
xc = None
|
| 720 |
+
|
| 721 |
+
return c, xc
|
| 722 |
+
|
| 723 |
+
@torch.no_grad()
|
| 724 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
| 725 |
+
cond_key=None, return_original_cond=False, bs=None, mask_temporal=False):
|
| 726 |
+
""" Get input in LDM
|
| 727 |
+
"""
|
| 728 |
+
# get input imgaes
|
| 729 |
+
x = super().get_input(batch, k) # k = first_stage_key=image
|
| 730 |
+
is_imgs = True if k == 'jpg' else False
|
| 731 |
+
if is_imgs:
|
| 732 |
+
if self.static_video:
|
| 733 |
+
# repeat single img to a static video
|
| 734 |
+
x = x.unsqueeze(2) # bchw -> bc1hw
|
| 735 |
+
x = x.repeat(1,1,self.temporal_length,1,1) # bc1hw -> bcthw
|
| 736 |
+
else:
|
| 737 |
+
# rearrange to videos with T random img
|
| 738 |
+
bs_load = x.shape[0] // self.temporal_length
|
| 739 |
+
x = x[:bs_load*self.temporal_length, ...]
|
| 740 |
+
x = rearrange(x, '(b t) c h w -> b c t h w', t=self.temporal_length, b=bs_load)
|
| 741 |
+
|
| 742 |
+
if bs is not None:
|
| 743 |
+
x = x[:bs]
|
| 744 |
+
|
| 745 |
+
x = x.to(self.device)
|
| 746 |
+
x_ori = x
|
| 747 |
+
|
| 748 |
+
b, _, t, h, w = x.shape
|
| 749 |
+
|
| 750 |
+
# encode video frames x to z via a 2D encoder
|
| 751 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 752 |
+
encoder_posterior = self.encode_first_stage(x, mask_temporal)
|
| 753 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 754 |
+
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
c, xc = self.get_condition(batch, x, bs, force_c_encode, k, cond_key, is_imgs)
|
| 758 |
+
out = [z, c]
|
| 759 |
+
|
| 760 |
+
if return_first_stage_outputs:
|
| 761 |
+
xrec = self.decode_first_stage(z, mask_temporal=mask_temporal)
|
| 762 |
+
out.extend([x_ori, xrec])
|
| 763 |
+
if return_original_cond:
|
| 764 |
+
if isinstance(xc, torch.Tensor) and xc.dim() == 4:
|
| 765 |
+
xc = rearrange(xc, '(b t) c h w -> b c t h w', b=b, t=t)
|
| 766 |
+
out.append(xc)
|
| 767 |
+
|
| 768 |
+
return out
|
| 769 |
+
|
| 770 |
+
@torch.no_grad()
|
| 771 |
+
def decode(self, z, **kwargs,):
|
| 772 |
+
z = 1. / self.scale_factor * z - self.shift_factor
|
| 773 |
+
results = self.first_stage_model.decode(z,**kwargs)
|
| 774 |
+
return results
|
| 775 |
+
|
| 776 |
+
@torch.no_grad()
|
| 777 |
+
def decode_first_stage_2DAE(self, z, decode_bs=16, return_cpu=True, **kwargs):
|
| 778 |
+
b, _, t, _, _ = z.shape
|
| 779 |
+
z = rearrange(z, 'b c t h w -> (b t) c h w')
|
| 780 |
+
if decode_bs is None:
|
| 781 |
+
results = self.decode(z, **kwargs)
|
| 782 |
+
else:
|
| 783 |
+
z = torch.split(z, decode_bs, dim=0)
|
| 784 |
+
if return_cpu:
|
| 785 |
+
results = torch.cat([self.decode(z_, **kwargs).cpu() for z_ in z], dim=0)
|
| 786 |
+
else:
|
| 787 |
+
results = torch.cat([self.decode(z_, **kwargs) for z_ in z], dim=0)
|
| 788 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t).contiguous()
|
| 789 |
+
return results
|
| 790 |
+
|
| 791 |
+
@torch.no_grad()
|
| 792 |
+
def decode_first_stage(self, z, decode_bs=16, return_cpu=True, **kwargs):
|
| 793 |
+
assert(self.encoder_type == "2d" and z.dim() == 5)
|
| 794 |
+
return self.decode_first_stage_2DAE(z, decode_bs=decode_bs, return_cpu=return_cpu, **kwargs)
|
| 795 |
+
|
| 796 |
+
@torch.no_grad()
|
| 797 |
+
def encode_first_stage_2DAE(self, x, encode_bs=16):
|
| 798 |
+
b, _, t, _, _ = x.shape
|
| 799 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 800 |
+
if encode_bs is None:
|
| 801 |
+
results = self.first_stage_model.encode(x)
|
| 802 |
+
else:
|
| 803 |
+
x = torch.split(x, encode_bs, dim=0)
|
| 804 |
+
zs = []
|
| 805 |
+
for x_ in x:
|
| 806 |
+
encoder_posterior = self.first_stage_model.encode(x_)
|
| 807 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 808 |
+
zs.append(z)
|
| 809 |
+
results = torch.cat(zs, dim=0)
|
| 810 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
| 811 |
+
return results
|
| 812 |
+
|
| 813 |
+
@torch.no_grad()
|
| 814 |
+
def encode_first_stage(self, x):
|
| 815 |
+
assert(self.encoder_type == "2d" and x.dim() == 5)
|
| 816 |
+
b, _, t, _, _ = x.shape
|
| 817 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
| 818 |
+
results = self.first_stage_model.encode(x)
|
| 819 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
| 820 |
+
return results
|
| 821 |
+
|
| 822 |
+
def shared_step(self, batch, **kwargs):
|
| 823 |
+
""" shared step of LDM.
|
| 824 |
+
If learned condition, c is raw condition (e.g. text)
|
| 825 |
+
Encoding condition is performed in below forward function.
|
| 826 |
+
"""
|
| 827 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
| 828 |
+
loss = self(x, c)
|
| 829 |
+
return loss
|
| 830 |
+
|
| 831 |
+
def forward(self, x, c, *args, **kwargs):
|
| 832 |
+
start_t = getattr(self, "start_t", 0)
|
| 833 |
+
end_t = getattr(self, "end_t", self.num_timesteps)
|
| 834 |
+
t = torch.randint(start_t, end_t, (x.shape[0],), device=self.device).long()
|
| 835 |
+
|
| 836 |
+
if self.model.conditioning_key is not None:
|
| 837 |
+
assert c is not None
|
| 838 |
+
if self.cond_stage_trainable:
|
| 839 |
+
c = self.get_learned_conditioning(c)
|
| 840 |
+
if self.classfier_free_guidance and self.uncond_type == 'zero_embed':
|
| 841 |
+
for i, ci in enumerate(c):
|
| 842 |
+
if random.random() < self.prob:
|
| 843 |
+
c[i] = torch.zeros_like(c[i])
|
| 844 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
| 845 |
+
tc = self.cond_ids[t].to(self.device)
|
| 846 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
| 847 |
+
|
| 848 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
| 849 |
+
|
| 850 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False, **kwargs):
|
| 851 |
+
|
| 852 |
+
if isinstance(cond, dict):
|
| 853 |
+
# hybrid case, cond is exptected to be a dict
|
| 854 |
+
pass
|
| 855 |
+
else:
|
| 856 |
+
if not isinstance(cond, list):
|
| 857 |
+
cond = [cond]
|
| 858 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
| 859 |
+
cond = {key: cond}
|
| 860 |
+
|
| 861 |
+
x_recon = self.model(x_noisy, t, **cond, **kwargs)
|
| 862 |
+
|
| 863 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 864 |
+
return x_recon[0]
|
| 865 |
+
else:
|
| 866 |
+
return x_recon
|
| 867 |
+
|
| 868 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
| 869 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
| 870 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 871 |
+
|
| 872 |
+
def _prior_bpd(self, x_start):
|
| 873 |
+
"""
|
| 874 |
+
Get the prior KL term for the variational lower-bound, measured in
|
| 875 |
+
bits-per-dim.
|
| 876 |
+
This term can't be optimized, as it only depends on the encoder.
|
| 877 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
| 878 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
| 879 |
+
"""
|
| 880 |
+
batch_size = x_start.shape[0]
|
| 881 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
| 882 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
| 883 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
| 884 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
| 885 |
+
|
| 886 |
+
def p_losses(self, x_start, cond, t, noise=None, skip_qsample=False, x_noisy=None, cond_mask=None, **kwargs,):
|
| 887 |
+
if not skip_qsample:
|
| 888 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 889 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 890 |
+
else:
|
| 891 |
+
assert(x_noisy is not None)
|
| 892 |
+
assert(noise is not None)
|
| 893 |
+
model_output = self.apply_model(x_noisy, t, cond, **kwargs)
|
| 894 |
+
|
| 895 |
+
loss_dict = {}
|
| 896 |
+
prefix = 'train' if self.training else 'val'
|
| 897 |
+
|
| 898 |
+
if self.parameterization == "x0":
|
| 899 |
+
target = x_start
|
| 900 |
+
elif self.parameterization == "eps":
|
| 901 |
+
target = noise
|
| 902 |
+
else:
|
| 903 |
+
raise NotImplementedError()
|
| 904 |
+
|
| 905 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
|
| 906 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
| 907 |
+
if self.logvar.device != self.device:
|
| 908 |
+
self.logvar = self.logvar.to(self.device)
|
| 909 |
+
logvar_t = self.logvar[t]
|
| 910 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
| 911 |
+
if self.learn_logvar:
|
| 912 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
| 913 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
| 914 |
+
|
| 915 |
+
loss = self.l_simple_weight * loss.mean()
|
| 916 |
+
|
| 917 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4))
|
| 918 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
| 919 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
| 920 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
| 921 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
| 922 |
+
|
| 923 |
+
return loss, loss_dict
|
| 924 |
+
|
| 925 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
| 926 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None,
|
| 927 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 928 |
+
uc_type=None,):
|
| 929 |
+
t_in = t
|
| 930 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 931 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 932 |
+
else:
|
| 933 |
+
# with unconditional condition
|
| 934 |
+
if isinstance(c, torch.Tensor):
|
| 935 |
+
x_in = torch.cat([x] * 2)
|
| 936 |
+
t_in = torch.cat([t] * 2)
|
| 937 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 938 |
+
model_out_uncond, model_out = self.apply_model(x_in, t_in, c_in, return_ids=return_codebook_ids).chunk(2)
|
| 939 |
+
elif isinstance(c, dict):
|
| 940 |
+
model_out = self.apply_model(x, t, c, return_ids=return_codebook_ids)
|
| 941 |
+
model_out_uncond = self.apply_model(x, t, unconditional_conditioning, return_ids=return_codebook_ids)
|
| 942 |
+
else:
|
| 943 |
+
raise NotImplementedError
|
| 944 |
+
if uc_type is None:
|
| 945 |
+
model_out = model_out_uncond + unconditional_guidance_scale * (model_out - model_out_uncond)
|
| 946 |
+
else:
|
| 947 |
+
if uc_type == 'cfg_original':
|
| 948 |
+
model_out = model_out + unconditional_guidance_scale * (model_out - model_out_uncond)
|
| 949 |
+
elif uc_type == 'cfg_ours':
|
| 950 |
+
model_out = model_out + unconditional_guidance_scale * (model_out_uncond - model_out)
|
| 951 |
+
else:
|
| 952 |
+
raise NotImplementedError
|
| 953 |
+
|
| 954 |
+
if score_corrector is not None:
|
| 955 |
+
assert self.parameterization == "eps"
|
| 956 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
| 957 |
+
|
| 958 |
+
if return_codebook_ids:
|
| 959 |
+
model_out, logits = model_out
|
| 960 |
+
|
| 961 |
+
if self.parameterization == "eps":
|
| 962 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 963 |
+
elif self.parameterization == "x0":
|
| 964 |
+
x_recon = model_out
|
| 965 |
+
else:
|
| 966 |
+
raise NotImplementedError()
|
| 967 |
+
|
| 968 |
+
if clip_denoised:
|
| 969 |
+
x_recon.clamp_(-1., 1.)
|
| 970 |
+
if quantize_denoised:
|
| 971 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 972 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 973 |
+
if return_codebook_ids:
|
| 974 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 975 |
+
elif return_x0:
|
| 976 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 977 |
+
else:
|
| 978 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 979 |
+
|
| 980 |
+
@torch.no_grad()
|
| 981 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
| 982 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
| 983 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 984 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 985 |
+
uc_type=None,):
|
| 986 |
+
b, *_, device = *x.shape, x.device
|
| 987 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
| 988 |
+
return_codebook_ids=return_codebook_ids,
|
| 989 |
+
quantize_denoised=quantize_denoised,
|
| 990 |
+
return_x0=return_x0,
|
| 991 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs,
|
| 992 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 993 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 994 |
+
uc_type=uc_type,)
|
| 995 |
+
if return_codebook_ids:
|
| 996 |
+
raise DeprecationWarning("Support dropped.")
|
| 997 |
+
elif return_x0:
|
| 998 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 999 |
+
else:
|
| 1000 |
+
model_mean, _, model_log_variance = outputs
|
| 1001 |
+
|
| 1002 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 1003 |
+
if noise_dropout > 0.:
|
| 1004 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 1005 |
+
|
| 1006 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 1007 |
+
|
| 1008 |
+
if return_codebook_ids:
|
| 1009 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
| 1010 |
+
if return_x0:
|
| 1011 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
| 1012 |
+
else:
|
| 1013 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 1014 |
+
|
| 1015 |
+
@torch.no_grad()
|
| 1016 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
| 1017 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
| 1018 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
| 1019 |
+
log_every_t=None):
|
| 1020 |
+
if not log_every_t:
|
| 1021 |
+
log_every_t = self.log_every_t
|
| 1022 |
+
timesteps = self.num_timesteps
|
| 1023 |
+
if batch_size is not None:
|
| 1024 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 1025 |
+
shape = [batch_size] + list(shape)
|
| 1026 |
+
else:
|
| 1027 |
+
b = batch_size = shape[0]
|
| 1028 |
+
if x_T is None:
|
| 1029 |
+
img = torch.randn(shape, device=self.device)
|
| 1030 |
+
else:
|
| 1031 |
+
img = x_T
|
| 1032 |
+
intermediates = []
|
| 1033 |
+
if cond is not None:
|
| 1034 |
+
if isinstance(cond, dict):
|
| 1035 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1036 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1037 |
+
else:
|
| 1038 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1039 |
+
|
| 1040 |
+
if start_T is not None:
|
| 1041 |
+
timesteps = min(timesteps, start_T)
|
| 1042 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
| 1043 |
+
total=timesteps) if verbose else reversed(
|
| 1044 |
+
range(0, timesteps))
|
| 1045 |
+
if type(temperature) == float:
|
| 1046 |
+
temperature = [temperature] * timesteps
|
| 1047 |
+
|
| 1048 |
+
for i in iterator:
|
| 1049 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 1050 |
+
if self.shorten_cond_schedule:
|
| 1051 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1052 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1053 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1054 |
+
|
| 1055 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
| 1056 |
+
clip_denoised=self.clip_denoised,
|
| 1057 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
| 1058 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
| 1059 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1060 |
+
if mask is not None:
|
| 1061 |
+
assert x0 is not None
|
| 1062 |
+
img_orig = self.q_sample(x0, ts)
|
| 1063 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1064 |
+
|
| 1065 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1066 |
+
intermediates.append(x0_partial)
|
| 1067 |
+
if callback: callback(i)
|
| 1068 |
+
if img_callback: img_callback(img, i)
|
| 1069 |
+
return img, intermediates
|
| 1070 |
+
|
| 1071 |
+
@torch.no_grad()
|
| 1072 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
| 1073 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
| 1074 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
| 1075 |
+
log_every_t=None,
|
| 1076 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 1077 |
+
uc_type=None,):
|
| 1078 |
+
|
| 1079 |
+
if not log_every_t:
|
| 1080 |
+
log_every_t = self.log_every_t
|
| 1081 |
+
device = self.betas.device
|
| 1082 |
+
b = shape[0]
|
| 1083 |
+
|
| 1084 |
+
# sample an initial noise
|
| 1085 |
+
if x_T is None:
|
| 1086 |
+
img = torch.randn(shape, device=device)
|
| 1087 |
+
else:
|
| 1088 |
+
img = x_T
|
| 1089 |
+
|
| 1090 |
+
intermediates = [img]
|
| 1091 |
+
if timesteps is None:
|
| 1092 |
+
timesteps = self.num_timesteps
|
| 1093 |
+
|
| 1094 |
+
if start_T is not None:
|
| 1095 |
+
timesteps = min(timesteps, start_T)
|
| 1096 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
| 1097 |
+
range(0, timesteps))
|
| 1098 |
+
|
| 1099 |
+
if mask is not None:
|
| 1100 |
+
assert x0 is not None
|
| 1101 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 1102 |
+
|
| 1103 |
+
for i in iterator:
|
| 1104 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 1105 |
+
if self.shorten_cond_schedule:
|
| 1106 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1107 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1108 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1109 |
+
|
| 1110 |
+
img = self.p_sample(img, cond, ts,
|
| 1111 |
+
clip_denoised=self.clip_denoised,
|
| 1112 |
+
quantize_denoised=quantize_denoised,
|
| 1113 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1114 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 1115 |
+
uc_type=uc_type)
|
| 1116 |
+
if mask is not None:
|
| 1117 |
+
img_orig = self.q_sample(x0, ts)
|
| 1118 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1119 |
+
|
| 1120 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1121 |
+
intermediates.append(img)
|
| 1122 |
+
if callback: callback(i)
|
| 1123 |
+
if img_callback: img_callback(img, i)
|
| 1124 |
+
|
| 1125 |
+
if return_intermediates:
|
| 1126 |
+
return img, intermediates
|
| 1127 |
+
return img
|
| 1128 |
+
|
| 1129 |
+
@torch.no_grad()
|
| 1130 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
| 1131 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
| 1132 |
+
mask=None, x0=None, shape=None, **kwargs):
|
| 1133 |
+
if shape is None:
|
| 1134 |
+
shape = (batch_size, self.channels, self.total_length, *self.image_size)
|
| 1135 |
+
if cond is not None:
|
| 1136 |
+
if isinstance(cond, dict):
|
| 1137 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1138 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1139 |
+
else:
|
| 1140 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1141 |
+
return self.p_sample_loop(cond,
|
| 1142 |
+
shape,
|
| 1143 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
| 1144 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
| 1145 |
+
mask=mask, x0=x0,)
|
| 1146 |
+
|
| 1147 |
+
@torch.no_grad()
|
| 1148 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
| 1149 |
+
|
| 1150 |
+
if ddim:
|
| 1151 |
+
ddim_sampler = DDIMSampler(self)
|
| 1152 |
+
shape = (self.channels, self.total_length, *self.image_size)
|
| 1153 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
| 1154 |
+
shape,cond,verbose=False, **kwargs)
|
| 1155 |
+
|
| 1156 |
+
else:
|
| 1157 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
| 1158 |
+
return_intermediates=True, **kwargs)
|
| 1159 |
+
|
| 1160 |
+
return samples, intermediates
|
| 1161 |
+
|
| 1162 |
+
@torch.no_grad()
|
| 1163 |
+
def log_condition(self, log, batch, xc, x, c, cond_stage_key=None):
|
| 1164 |
+
"""
|
| 1165 |
+
xc: oringinal condition before enconding.
|
| 1166 |
+
c: condition after encoding.
|
| 1167 |
+
"""
|
| 1168 |
+
if x.dim() == 5:
|
| 1169 |
+
txt_img_shape = [x.shape[3], x.shape[4]]
|
| 1170 |
+
elif x.dim() == 4:
|
| 1171 |
+
txt_img_shape = [x.shape[2], x.shape[3]]
|
| 1172 |
+
else:
|
| 1173 |
+
raise ValueError
|
| 1174 |
+
if self.model.conditioning_key is not None: #concat-time-mask
|
| 1175 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1176 |
+
xc = self.cond_stage_model.decode(c)
|
| 1177 |
+
log["conditioning"] = xc
|
| 1178 |
+
elif cond_stage_key in ["caption", "txt"]:
|
| 1179 |
+
log["conditioning_txt_img"] = log_txt_as_img(txt_img_shape, batch[cond_stage_key], size=x.shape[3]//25)
|
| 1180 |
+
log["conditioning_txt"] = batch[cond_stage_key]
|
| 1181 |
+
elif cond_stage_key == 'class_label':
|
| 1182 |
+
try:
|
| 1183 |
+
xc = log_txt_as_img(txt_img_shape, batch["human_label"], size=x.shape[3]//25)
|
| 1184 |
+
except:
|
| 1185 |
+
xc = log_txt_as_img(txt_img_shape, batch["class_name"], size=x.shape[3]//25)
|
| 1186 |
+
log['conditioning'] = xc
|
| 1187 |
+
elif isimage(xc):
|
| 1188 |
+
log["conditioning"] = xc
|
| 1189 |
+
if ismap(xc):
|
| 1190 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1191 |
+
if isinstance(c, dict) and 'mask' in c:
|
| 1192 |
+
log['mask'] =self.mask_to_rgb(c['mask'])
|
| 1193 |
+
return log
|
| 1194 |
+
|
| 1195 |
+
@torch.no_grad()
|
| 1196 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., unconditional_guidance_scale=1.0,
|
| 1197 |
+
first_stage_key2=None, cond_key2=None,
|
| 1198 |
+
c=None,
|
| 1199 |
+
**kwargs):
|
| 1200 |
+
""" log images for LatentDiffusion """
|
| 1201 |
+
use_ddim = ddim_steps is not None
|
| 1202 |
+
is_imgs = first_stage_key2 is not None
|
| 1203 |
+
if is_imgs:
|
| 1204 |
+
assert(cond_key2 is not None)
|
| 1205 |
+
log = dict()
|
| 1206 |
+
|
| 1207 |
+
# get input
|
| 1208 |
+
z, c, x, xrec, xc = self.get_input(batch,
|
| 1209 |
+
k=self.first_stage_key if first_stage_key2 is None else first_stage_key2,
|
| 1210 |
+
return_first_stage_outputs=True,
|
| 1211 |
+
force_c_encode=True,
|
| 1212 |
+
return_original_cond=True,
|
| 1213 |
+
bs=N,
|
| 1214 |
+
cond_key=cond_key2 if cond_key2 is not None else None,
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
N_ori = N
|
| 1218 |
+
N = min(z.shape[0], N)
|
| 1219 |
+
n_row = min(x.shape[0], n_row)
|
| 1220 |
+
|
| 1221 |
+
if unconditional_guidance_scale != 1.0:
|
| 1222 |
+
prompts = N * self.temporal_length * [""] if (is_imgs and not self.static_video) else N * [""]
|
| 1223 |
+
uc = self.get_condition_validate(prompts)
|
| 1224 |
+
|
| 1225 |
+
else:
|
| 1226 |
+
uc = None
|
| 1227 |
+
|
| 1228 |
+
log["inputs"] = x
|
| 1229 |
+
log["reconstruction"] = xrec
|
| 1230 |
+
log = self.log_condition(log, batch, xc, x, c,
|
| 1231 |
+
cond_stage_key=self.cond_stage_key if cond_key2 is None else cond_key2
|
| 1232 |
+
)
|
| 1233 |
+
|
| 1234 |
+
if sample:
|
| 1235 |
+
with self.ema_scope("Plotting"):
|
| 1236 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
| 1237 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
| 1238 |
+
temporal_length=self.video_length,
|
| 1239 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1240 |
+
unconditional_conditioning=uc, **kwargs,
|
| 1241 |
+
)
|
| 1242 |
+
# decode samples
|
| 1243 |
+
x_samples = self.decode_first_stage(samples)
|
| 1244 |
+
log["samples"] = x_samples
|
| 1245 |
+
return log
|
| 1246 |
+
|
| 1247 |
+
def configure_optimizers(self):
|
| 1248 |
+
""" configure_optimizers for LatentDiffusion """
|
| 1249 |
+
lr = self.learning_rate
|
| 1250 |
+
|
| 1251 |
+
# --------------------------------------------------------------------------------
|
| 1252 |
+
# set parameters
|
| 1253 |
+
if hasattr(self, "only_optimize_empty_parameters") and self.only_optimize_empty_parameters:
|
| 1254 |
+
print("[INFO] Optimize only empty parameters!")
|
| 1255 |
+
assert(hasattr(self, "empty_paras"))
|
| 1256 |
+
params = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
| 1257 |
+
elif hasattr(self, "only_optimize_pretrained_parameters") and self.only_optimize_pretrained_parameters:
|
| 1258 |
+
print("[INFO] Optimize only pretrained parameters!")
|
| 1259 |
+
assert(hasattr(self, "empty_paras"))
|
| 1260 |
+
params = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
|
| 1261 |
+
assert(len(params) != 0)
|
| 1262 |
+
elif getattr(self, "optimize_empty_and_spatialattn", False):
|
| 1263 |
+
print("[INFO] Optimize empty parameters + spatial transformer!")
|
| 1264 |
+
assert(hasattr(self, "empty_paras"))
|
| 1265 |
+
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
| 1266 |
+
SA_list = [".attn1.", ".attn2.", ".ff.", ".norm1.", ".norm2.", ".norm3."]
|
| 1267 |
+
SA_params = [p for n, p in self.model.named_parameters() if check_istarget(n, SA_list)]
|
| 1268 |
+
if getattr(self, "spatial_lr_decay", False):
|
| 1269 |
+
params = [
|
| 1270 |
+
{"params": empty_paras},
|
| 1271 |
+
{"params": SA_params, "lr": lr * self.spatial_lr_decay}
|
| 1272 |
+
]
|
| 1273 |
+
else:
|
| 1274 |
+
params = empty_paras + SA_params
|
| 1275 |
+
else:
|
| 1276 |
+
# optimize whole denoiser
|
| 1277 |
+
if hasattr(self, "spatial_lr_decay") and self.spatial_lr_decay:
|
| 1278 |
+
print("[INFO] Optimize the whole net with different lr!")
|
| 1279 |
+
print(f"[INFO] {lr} for empty paras, {lr * self.spatial_lr_decay} for pretrained paras!")
|
| 1280 |
+
empty_paras = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
|
| 1281 |
+
# assert(len(empty_paras) == len(self.empty_paras)) # self.empty_paras:cond_stage_model.embedding.weight not in diffusion model params
|
| 1282 |
+
pretrained_paras = [p for n, p in self.model.named_parameters() if n not in self.empty_paras]
|
| 1283 |
+
params = [
|
| 1284 |
+
{"params": empty_paras},
|
| 1285 |
+
{"params": pretrained_paras, "lr": lr * self.spatial_lr_decay}
|
| 1286 |
+
]
|
| 1287 |
+
print(f"[INFO] Empty paras: {len(empty_paras)}, Pretrained paras: {len(pretrained_paras)}")
|
| 1288 |
+
|
| 1289 |
+
else:
|
| 1290 |
+
params = list(self.model.parameters())
|
| 1291 |
+
|
| 1292 |
+
if hasattr(self, "generator_trainable") and not self.generator_trainable:
|
| 1293 |
+
# fix unet denoiser
|
| 1294 |
+
params = list()
|
| 1295 |
+
|
| 1296 |
+
if self.inject_unet:
|
| 1297 |
+
params = itertools.chain(*self.lora_require_grad_params)
|
| 1298 |
+
|
| 1299 |
+
if self.inject_clip:
|
| 1300 |
+
if self.inject_unet:
|
| 1301 |
+
params = list(params)+list(itertools.chain(*self.lora_require_grad_params_clip))
|
| 1302 |
+
else:
|
| 1303 |
+
params = itertools.chain(*self.lora_require_grad_params_clip)
|
| 1304 |
+
|
| 1305 |
+
|
| 1306 |
+
# append paras
|
| 1307 |
+
# ------------------------------------------------------------------
|
| 1308 |
+
def add_cond_model(cond_model, params):
|
| 1309 |
+
if isinstance(params[0], dict):
|
| 1310 |
+
# parameter groups
|
| 1311 |
+
params.append({"params": list(cond_model.parameters())})
|
| 1312 |
+
else:
|
| 1313 |
+
# parameter list: [torch.nn.parameter.Parameter]
|
| 1314 |
+
params = params + list(cond_model.parameters())
|
| 1315 |
+
return params
|
| 1316 |
+
# ------------------------------------------------------------------
|
| 1317 |
+
|
| 1318 |
+
if self.cond_stage_trainable:
|
| 1319 |
+
# print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
| 1320 |
+
params = add_cond_model(self.cond_stage_model, params)
|
| 1321 |
+
|
| 1322 |
+
if self.learn_logvar:
|
| 1323 |
+
print('Diffusion model optimizing logvar')
|
| 1324 |
+
if isinstance(params[0], dict):
|
| 1325 |
+
params.append({"params": [self.logvar]})
|
| 1326 |
+
else:
|
| 1327 |
+
params.append(self.logvar)
|
| 1328 |
+
|
| 1329 |
+
# --------------------------------------------------------------------------------
|
| 1330 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 1331 |
+
|
| 1332 |
+
# lr scheduler
|
| 1333 |
+
if self.use_scheduler:
|
| 1334 |
+
assert 'target' in self.scheduler_config
|
| 1335 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 1336 |
+
|
| 1337 |
+
print("Setting up LambdaLR scheduler...")
|
| 1338 |
+
scheduler = [
|
| 1339 |
+
{
|
| 1340 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
| 1341 |
+
'interval': 'step',
|
| 1342 |
+
'frequency': 1
|
| 1343 |
+
}]
|
| 1344 |
+
return [opt], scheduler
|
| 1345 |
+
|
| 1346 |
+
return opt
|
| 1347 |
+
|
| 1348 |
+
@torch.no_grad()
|
| 1349 |
+
def to_rgb(self, x):
|
| 1350 |
+
x = x.float()
|
| 1351 |
+
if not hasattr(self, "colorize"):
|
| 1352 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
| 1353 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
| 1354 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
| 1355 |
+
return x
|
| 1356 |
+
|
| 1357 |
+
@torch.no_grad()
|
| 1358 |
+
def mask_to_rgb(self, x):
|
| 1359 |
+
x = x * 255
|
| 1360 |
+
x = x.int()
|
| 1361 |
+
return x
|
| 1362 |
+
|
| 1363 |
+
class DiffusionWrapper(pl.LightningModule):
|
| 1364 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 1365 |
+
super().__init__()
|
| 1366 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 1367 |
+
print('Successfully initialize the diffusion model !')
|
| 1368 |
+
self.conditioning_key = conditioning_key
|
| 1369 |
+
# assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'resblockcond', 'hybrid-adm', 'hybrid-time']
|
| 1370 |
+
|
| 1371 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
|
| 1372 |
+
c_adm=None, s=None, mask=None, **kwargs):
|
| 1373 |
+
# temporal_context = fps is foNone
|
| 1374 |
+
if self.conditioning_key is None:
|
| 1375 |
+
out = self.diffusion_model(x, t, **kwargs)
|
| 1376 |
+
elif self.conditioning_key == 'concat':
|
| 1377 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1378 |
+
out = self.diffusion_model(xc, t, **kwargs)
|
| 1379 |
+
elif self.conditioning_key == 'crossattn':
|
| 1380 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1381 |
+
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
| 1382 |
+
elif self.conditioning_key == 'hybrid':
|
| 1383 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1384 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1385 |
+
out = self.diffusion_model(xc, t, context=cc, **kwargs)
|
| 1386 |
+
elif self.conditioning_key == 'resblockcond':
|
| 1387 |
+
cc = c_crossattn[0]
|
| 1388 |
+
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
| 1389 |
+
elif self.conditioning_key == 'adm':
|
| 1390 |
+
cc = c_crossattn[0]
|
| 1391 |
+
out = self.diffusion_model(x, t, y=cc, **kwargs)
|
| 1392 |
+
elif self.conditioning_key == 'hybrid-adm':
|
| 1393 |
+
assert c_adm is not None
|
| 1394 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1395 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1396 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs)
|
| 1397 |
+
elif self.conditioning_key == 'hybrid-time':
|
| 1398 |
+
assert s is not None
|
| 1399 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1400 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1401 |
+
out = self.diffusion_model(xc, t, context=cc, s=s, **kwargs)
|
| 1402 |
+
elif self.conditioning_key == 'concat-time-mask':
|
| 1403 |
+
# assert s is not None
|
| 1404 |
+
# print('x & mask:',x.shape,c_concat[0].shape)
|
| 1405 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1406 |
+
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask, **kwargs)
|
| 1407 |
+
elif self.conditioning_key == 'concat-adm-mask':
|
| 1408 |
+
# assert s is not None
|
| 1409 |
+
# print('x & mask:',x.shape,c_concat[0].shape)
|
| 1410 |
+
if c_concat is not None:
|
| 1411 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1412 |
+
else:
|
| 1413 |
+
xc = x
|
| 1414 |
+
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask, **kwargs)
|
| 1415 |
+
elif self.conditioning_key == 'crossattn-adm':
|
| 1416 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1417 |
+
out = self.diffusion_model(x, t, context=cc, y=s, **kwargs)
|
| 1418 |
+
elif self.conditioning_key == 'hybrid-adm-mask':
|
| 1419 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1420 |
+
if c_concat is not None:
|
| 1421 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1422 |
+
else:
|
| 1423 |
+
xc = x
|
| 1424 |
+
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask, **kwargs)
|
| 1425 |
+
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
|
| 1426 |
+
# assert s is not None
|
| 1427 |
+
assert c_adm is not None
|
| 1428 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1429 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1430 |
+
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm, **kwargs)
|
| 1431 |
+
else:
|
| 1432 |
+
raise NotImplementedError()
|
| 1433 |
+
|
| 1434 |
+
return out
|
| 1435 |
+
|
lvdm/models/modules/attention_temporal.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Any
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch as th
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
try:
|
| 8 |
+
import xformers
|
| 9 |
+
import xformers.ops
|
| 10 |
+
XFORMERS_IS_AVAILBLE = True
|
| 11 |
+
except:
|
| 12 |
+
XFORMERS_IS_AVAILBLE = False
|
| 13 |
+
|
| 14 |
+
from lvdm.models.modules.util import (
|
| 15 |
+
GEGLU,
|
| 16 |
+
exists,
|
| 17 |
+
default,
|
| 18 |
+
Normalize,
|
| 19 |
+
checkpoint,
|
| 20 |
+
zero_module,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# ---------------------------------------------------------------------------------------------------
|
| 25 |
+
class FeedForward(nn.Module):
|
| 26 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 27 |
+
super().__init__()
|
| 28 |
+
inner_dim = int(dim * mult)
|
| 29 |
+
dim_out = default(dim_out, dim)
|
| 30 |
+
project_in = nn.Sequential(
|
| 31 |
+
nn.Linear(dim, inner_dim),
|
| 32 |
+
nn.GELU()
|
| 33 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 34 |
+
|
| 35 |
+
self.net = nn.Sequential(
|
| 36 |
+
project_in,
|
| 37 |
+
nn.Dropout(dropout),
|
| 38 |
+
nn.Linear(inner_dim, dim_out)
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
return self.net(x)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# ---------------------------------------------------------------------------------------------------
|
| 46 |
+
class RelativePosition(nn.Module):
|
| 47 |
+
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
|
| 48 |
+
|
| 49 |
+
def __init__(self, num_units, max_relative_position):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.num_units = num_units
|
| 52 |
+
self.max_relative_position = max_relative_position
|
| 53 |
+
self.embeddings_table = nn.Parameter(th.Tensor(max_relative_position * 2 + 1, num_units))
|
| 54 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
| 55 |
+
|
| 56 |
+
def forward(self, length_q, length_k):
|
| 57 |
+
device = self.embeddings_table.device
|
| 58 |
+
range_vec_q = th.arange(length_q, device=device)
|
| 59 |
+
range_vec_k = th.arange(length_k, device=device)
|
| 60 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
| 61 |
+
distance_mat_clipped = th.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
| 62 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
| 63 |
+
final_mat = final_mat.long()
|
| 64 |
+
embeddings = self.embeddings_table[final_mat]
|
| 65 |
+
return embeddings
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# ---------------------------------------------------------------------------------------------------
|
| 69 |
+
class TemporalCrossAttention(nn.Module):
|
| 70 |
+
def __init__(self,
|
| 71 |
+
query_dim,
|
| 72 |
+
context_dim=None,
|
| 73 |
+
heads=8,
|
| 74 |
+
dim_head=64,
|
| 75 |
+
dropout=0.,
|
| 76 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
| 77 |
+
temporal_length=None, # relative positional representation
|
| 78 |
+
**kwargs,
|
| 79 |
+
):
|
| 80 |
+
super().__init__()
|
| 81 |
+
inner_dim = dim_head * heads
|
| 82 |
+
context_dim = default(context_dim, query_dim)
|
| 83 |
+
self.context_dim = context_dim
|
| 84 |
+
self.scale = dim_head ** -0.5
|
| 85 |
+
self.heads = heads
|
| 86 |
+
self.temporal_length = temporal_length
|
| 87 |
+
self.use_relative_position = use_relative_position
|
| 88 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 89 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 90 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 91 |
+
self.to_out = nn.Sequential(
|
| 92 |
+
nn.Linear(inner_dim, query_dim),
|
| 93 |
+
nn.Dropout(dropout)
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if use_relative_position:
|
| 97 |
+
assert(temporal_length is not None)
|
| 98 |
+
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
| 99 |
+
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
| 100 |
+
|
| 101 |
+
nn.init.constant_(self.to_q.weight, 0)
|
| 102 |
+
nn.init.constant_(self.to_k.weight, 0)
|
| 103 |
+
nn.init.constant_(self.to_v.weight, 0)
|
| 104 |
+
nn.init.constant_(self.to_out[0].weight, 0)
|
| 105 |
+
nn.init.constant_(self.to_out[0].bias, 0)
|
| 106 |
+
|
| 107 |
+
def forward(self, x, context=None, mask=None):
|
| 108 |
+
nh = self.heads
|
| 109 |
+
out = x
|
| 110 |
+
|
| 111 |
+
# cal qkv
|
| 112 |
+
q = self.to_q(out)
|
| 113 |
+
context = default(context, x)
|
| 114 |
+
k = self.to_k(context)
|
| 115 |
+
v = self.to_v(context)
|
| 116 |
+
|
| 117 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=nh), (q, k, v))
|
| 118 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 119 |
+
|
| 120 |
+
# relative positional embedding
|
| 121 |
+
if self.use_relative_position:
|
| 122 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
| 123 |
+
k2 = self.relative_position_k(len_q, len_k)
|
| 124 |
+
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale
|
| 125 |
+
sim += sim2
|
| 126 |
+
|
| 127 |
+
# mask attention
|
| 128 |
+
if mask is not None:
|
| 129 |
+
max_neg_value = -1e9
|
| 130 |
+
sim = sim + (1-mask.float()) * max_neg_value # 1=masking,0=no masking
|
| 131 |
+
|
| 132 |
+
# attend to values
|
| 133 |
+
attn = sim.softmax(dim=-1)
|
| 134 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 135 |
+
|
| 136 |
+
# relative positional embedding
|
| 137 |
+
if self.use_relative_position:
|
| 138 |
+
v2 = self.relative_position_v(len_q, len_v)
|
| 139 |
+
out2 = einsum('b t s, t s d -> b t d', attn, v2)
|
| 140 |
+
out += out2
|
| 141 |
+
|
| 142 |
+
# merge head
|
| 143 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=nh)
|
| 144 |
+
return self.to_out(out)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# ---------------------------------------------------------------------------------------------------
|
| 148 |
+
class CrossAttention(nn.Module):
|
| 149 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
|
| 150 |
+
**kwargs,):
|
| 151 |
+
super().__init__()
|
| 152 |
+
inner_dim = dim_head * heads
|
| 153 |
+
context_dim = default(context_dim, query_dim)
|
| 154 |
+
|
| 155 |
+
self.scale = dim_head ** -0.5
|
| 156 |
+
self.heads = heads
|
| 157 |
+
|
| 158 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 159 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 160 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 161 |
+
|
| 162 |
+
self.to_out = nn.Sequential(
|
| 163 |
+
nn.Linear(inner_dim, query_dim),
|
| 164 |
+
nn.Dropout(dropout)
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def forward(self, x, context=None, mask=None):
|
| 168 |
+
h = self.heads
|
| 169 |
+
b = x.shape[0]
|
| 170 |
+
|
| 171 |
+
q = self.to_q(x)
|
| 172 |
+
context = default(context, x)
|
| 173 |
+
k = self.to_k(context)
|
| 174 |
+
v = self.to_v(context)
|
| 175 |
+
|
| 176 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 177 |
+
|
| 178 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 179 |
+
|
| 180 |
+
if exists(mask):
|
| 181 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 182 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 183 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 184 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 185 |
+
|
| 186 |
+
attn = sim.softmax(dim=-1)
|
| 187 |
+
|
| 188 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 189 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 190 |
+
return self.to_out(out)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# ---------------------------------------------------------------------------------------------------
|
| 194 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 195 |
+
"""https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 196 |
+
"""
|
| 197 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0,
|
| 198 |
+
**kwargs,):
|
| 199 |
+
super().__init__()
|
| 200 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
| 201 |
+
f"{heads} heads."
|
| 202 |
+
)
|
| 203 |
+
inner_dim = dim_head * heads
|
| 204 |
+
context_dim = default(context_dim, query_dim)
|
| 205 |
+
|
| 206 |
+
self.heads = heads
|
| 207 |
+
self.dim_head = dim_head
|
| 208 |
+
|
| 209 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 210 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 211 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 212 |
+
|
| 213 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
| 214 |
+
self.attention_op: Optional[Any] = None
|
| 215 |
+
|
| 216 |
+
def forward(self, x, context=None, mask=None):
|
| 217 |
+
q = self.to_q(x)
|
| 218 |
+
context = default(context, x)
|
| 219 |
+
k = self.to_k(context)
|
| 220 |
+
v = self.to_v(context)
|
| 221 |
+
|
| 222 |
+
b, _, _ = q.shape
|
| 223 |
+
q, k, v = map(
|
| 224 |
+
lambda t: t.unsqueeze(3)
|
| 225 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 226 |
+
.permute(0, 2, 1, 3)
|
| 227 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 228 |
+
.contiguous(),
|
| 229 |
+
(q, k, v),
|
| 230 |
+
)
|
| 231 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 232 |
+
|
| 233 |
+
if exists(mask):
|
| 234 |
+
raise NotImplementedError
|
| 235 |
+
out = (
|
| 236 |
+
out.unsqueeze(0)
|
| 237 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 238 |
+
.permute(0, 2, 1, 3)
|
| 239 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 240 |
+
)
|
| 241 |
+
return self.to_out(out)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# ---------------------------------------------------------------------------------------------------
|
| 245 |
+
class BasicTransformerBlockST(nn.Module):
|
| 246 |
+
"""
|
| 247 |
+
if no context is given to forward function, cross-attention defaults to self-attention
|
| 248 |
+
"""
|
| 249 |
+
def __init__(self,
|
| 250 |
+
# Spatial
|
| 251 |
+
dim,
|
| 252 |
+
n_heads,
|
| 253 |
+
d_head,
|
| 254 |
+
dropout=0.,
|
| 255 |
+
context_dim=None,
|
| 256 |
+
gated_ff=True,
|
| 257 |
+
checkpoint=True,
|
| 258 |
+
# Temporal
|
| 259 |
+
temporal_length=None,
|
| 260 |
+
use_relative_position=True,
|
| 261 |
+
**kwargs,
|
| 262 |
+
):
|
| 263 |
+
super().__init__()
|
| 264 |
+
|
| 265 |
+
# spatial self attention (if context_dim is None) and spatial cross attention
|
| 266 |
+
if XFORMERS_IS_AVAILBLE:
|
| 267 |
+
self.attn1 = MemoryEfficientCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
| 268 |
+
self.attn2 = MemoryEfficientCrossAttention(query_dim=dim, context_dim=context_dim,
|
| 269 |
+
heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
| 270 |
+
else:
|
| 271 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
| 272 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
| 273 |
+
heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
|
| 274 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 275 |
+
|
| 276 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 277 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 278 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 279 |
+
self.checkpoint = checkpoint
|
| 280 |
+
|
| 281 |
+
# Temporal attention
|
| 282 |
+
self.attn1_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
| 283 |
+
temporal_length=temporal_length,
|
| 284 |
+
use_relative_position=use_relative_position,
|
| 285 |
+
**kwargs,
|
| 286 |
+
)
|
| 287 |
+
self.attn2_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
| 288 |
+
# cross attn
|
| 289 |
+
context_dim=None,
|
| 290 |
+
# temporal attn
|
| 291 |
+
temporal_length=temporal_length,
|
| 292 |
+
use_relative_position=use_relative_position,
|
| 293 |
+
**kwargs,
|
| 294 |
+
)
|
| 295 |
+
self.norm4 = nn.LayerNorm(dim)
|
| 296 |
+
self.norm5 = nn.LayerNorm(dim)
|
| 297 |
+
|
| 298 |
+
def forward(self, x, context=None, **kwargs):
|
| 299 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 300 |
+
|
| 301 |
+
def _forward(self, x, context=None, mask=None,):
|
| 302 |
+
assert(x.dim() == 5), f"x shape = {x.shape}"
|
| 303 |
+
b, c, t, h, w = x.shape
|
| 304 |
+
|
| 305 |
+
# spatial self attention
|
| 306 |
+
x = rearrange(x, 'b c t h w -> (b t) (h w) c')
|
| 307 |
+
x = self.attn1(self.norm1(x)) + x
|
| 308 |
+
x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
|
| 309 |
+
|
| 310 |
+
# temporal self attention
|
| 311 |
+
x = rearrange(x, 'b c t h w -> (b h w) t c')
|
| 312 |
+
x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
| 313 |
+
x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
| 314 |
+
|
| 315 |
+
# spatial cross attention
|
| 316 |
+
x = rearrange(x, 'b c t h w -> (b t) (h w) c')
|
| 317 |
+
if context is not None:
|
| 318 |
+
context_ = []
|
| 319 |
+
for i in range(context.shape[0]):
|
| 320 |
+
context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
| 321 |
+
context_ = torch.cat(context_,dim=0)
|
| 322 |
+
else:
|
| 323 |
+
context_ = None
|
| 324 |
+
x = self.attn2(self.norm2(x), context=context_) + x
|
| 325 |
+
x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
|
| 326 |
+
|
| 327 |
+
# temporal cross attention
|
| 328 |
+
x = rearrange(x, 'b c t h w -> (b h w) t c')
|
| 329 |
+
x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
| 330 |
+
|
| 331 |
+
# feedforward
|
| 332 |
+
x = self.ff(self.norm3(x)) + x
|
| 333 |
+
x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
| 334 |
+
|
| 335 |
+
return x
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# ---------------------------------------------------------------------------------------------------
|
| 339 |
+
class SpatialTemporalTransformer(nn.Module):
|
| 340 |
+
"""
|
| 341 |
+
Transformer block for video-like data (5D tensor).
|
| 342 |
+
First, project the input (aka embedding) with NO reshape.
|
| 343 |
+
Then apply standard transformer action.
|
| 344 |
+
The 5D -> 3D reshape operation will be done in the specific attention module.
|
| 345 |
+
"""
|
| 346 |
+
def __init__(
|
| 347 |
+
self,
|
| 348 |
+
in_channels, n_heads, d_head,
|
| 349 |
+
depth=1, dropout=0.,
|
| 350 |
+
context_dim=None,
|
| 351 |
+
# Temporal
|
| 352 |
+
temporal_length=None,
|
| 353 |
+
use_relative_position=True,
|
| 354 |
+
**kwargs,
|
| 355 |
+
):
|
| 356 |
+
super().__init__()
|
| 357 |
+
|
| 358 |
+
self.in_channels = in_channels
|
| 359 |
+
inner_dim = n_heads * d_head
|
| 360 |
+
|
| 361 |
+
self.norm = Normalize(in_channels)
|
| 362 |
+
self.proj_in = nn.Conv3d(in_channels,
|
| 363 |
+
inner_dim,
|
| 364 |
+
kernel_size=1,
|
| 365 |
+
stride=1,
|
| 366 |
+
padding=0)
|
| 367 |
+
|
| 368 |
+
self.transformer_blocks = nn.ModuleList(
|
| 369 |
+
[BasicTransformerBlockST(
|
| 370 |
+
inner_dim, n_heads, d_head, dropout=dropout,
|
| 371 |
+
# cross attn
|
| 372 |
+
context_dim=context_dim,
|
| 373 |
+
# temporal attn
|
| 374 |
+
temporal_length=temporal_length,
|
| 375 |
+
use_relative_position=use_relative_position,
|
| 376 |
+
**kwargs
|
| 377 |
+
) for d in range(depth)]
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
self.proj_out = zero_module(nn.Conv3d(inner_dim,
|
| 381 |
+
in_channels,
|
| 382 |
+
kernel_size=1,
|
| 383 |
+
stride=1,
|
| 384 |
+
padding=0))
|
| 385 |
+
|
| 386 |
+
def forward(self, x, context=None, **kwargs):
|
| 387 |
+
|
| 388 |
+
assert(x.dim() == 5), f"x shape = {x.shape}"
|
| 389 |
+
x_in = x
|
| 390 |
+
|
| 391 |
+
x = self.norm(x)
|
| 392 |
+
x = self.proj_in(x)
|
| 393 |
+
|
| 394 |
+
for block in self.transformer_blocks:
|
| 395 |
+
x = block(x, context=context, **kwargs)
|
| 396 |
+
|
| 397 |
+
x = self.proj_out(x)
|
| 398 |
+
|
| 399 |
+
return x + x_in
|
lvdm/models/modules/autoencoder_modules.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from torch import nn
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 10 |
+
"""
|
| 11 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 12 |
+
From Fairseq.
|
| 13 |
+
Build sinusoidal embeddings.
|
| 14 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 15 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 16 |
+
"""
|
| 17 |
+
assert len(timesteps.shape) == 1
|
| 18 |
+
|
| 19 |
+
half_dim = embedding_dim // 2
|
| 20 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 21 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 22 |
+
emb = emb.to(device=timesteps.device)
|
| 23 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 24 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 25 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 26 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 27 |
+
return emb
|
| 28 |
+
|
| 29 |
+
def nonlinearity(x):
|
| 30 |
+
# swish
|
| 31 |
+
return x*torch.sigmoid(x)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def Normalize(in_channels, num_groups=32):
|
| 35 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class LinearAttention(nn.Module):
|
| 40 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.heads = heads
|
| 43 |
+
hidden_dim = dim_head * heads
|
| 44 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
| 45 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
| 46 |
+
|
| 47 |
+
def forward(self, x):
|
| 48 |
+
b, c, h, w = x.shape
|
| 49 |
+
qkv = self.to_qkv(x)
|
| 50 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
| 51 |
+
k = k.softmax(dim=-1)
|
| 52 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
| 53 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
| 54 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
| 55 |
+
return self.to_out(out)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class LinAttnBlock(LinearAttention):
|
| 59 |
+
"""to match AttnBlock usage"""
|
| 60 |
+
def __init__(self, in_channels):
|
| 61 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class AttnBlock(nn.Module):
|
| 65 |
+
def __init__(self, in_channels):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.in_channels = in_channels
|
| 68 |
+
|
| 69 |
+
self.norm = Normalize(in_channels)
|
| 70 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 71 |
+
in_channels,
|
| 72 |
+
kernel_size=1,
|
| 73 |
+
stride=1,
|
| 74 |
+
padding=0)
|
| 75 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 76 |
+
in_channels,
|
| 77 |
+
kernel_size=1,
|
| 78 |
+
stride=1,
|
| 79 |
+
padding=0)
|
| 80 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 81 |
+
in_channels,
|
| 82 |
+
kernel_size=1,
|
| 83 |
+
stride=1,
|
| 84 |
+
padding=0)
|
| 85 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 86 |
+
in_channels,
|
| 87 |
+
kernel_size=1,
|
| 88 |
+
stride=1,
|
| 89 |
+
padding=0)
|
| 90 |
+
|
| 91 |
+
def forward(self, x):
|
| 92 |
+
h_ = x
|
| 93 |
+
h_ = self.norm(h_)
|
| 94 |
+
q = self.q(h_)
|
| 95 |
+
k = self.k(h_)
|
| 96 |
+
v = self.v(h_)
|
| 97 |
+
|
| 98 |
+
# compute attention
|
| 99 |
+
b,c,h,w = q.shape
|
| 100 |
+
q = q.reshape(b,c,h*w) # bcl
|
| 101 |
+
q = q.permute(0,2,1) # bcl -> blc l=hw
|
| 102 |
+
k = k.reshape(b,c,h*w) # bcl
|
| 103 |
+
|
| 104 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 105 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 106 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 107 |
+
|
| 108 |
+
# attend to values
|
| 109 |
+
v = v.reshape(b,c,h*w)
|
| 110 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 111 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 112 |
+
h_ = h_.reshape(b,c,h,w)
|
| 113 |
+
|
| 114 |
+
h_ = self.proj_out(h_)
|
| 115 |
+
|
| 116 |
+
return x+h_
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
| 120 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
| 121 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 122 |
+
if attn_type == "vanilla":
|
| 123 |
+
return AttnBlock(in_channels)
|
| 124 |
+
elif attn_type == "none":
|
| 125 |
+
return nn.Identity(in_channels)
|
| 126 |
+
else:
|
| 127 |
+
return LinAttnBlock(in_channels)
|
| 128 |
+
|
| 129 |
+
class Downsample(nn.Module):
|
| 130 |
+
def __init__(self, in_channels, with_conv):
|
| 131 |
+
super().__init__()
|
| 132 |
+
self.with_conv = with_conv
|
| 133 |
+
self.in_channels = in_channels
|
| 134 |
+
if self.with_conv:
|
| 135 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 136 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 137 |
+
in_channels,
|
| 138 |
+
kernel_size=3,
|
| 139 |
+
stride=2,
|
| 140 |
+
padding=0)
|
| 141 |
+
def forward(self, x):
|
| 142 |
+
if self.with_conv:
|
| 143 |
+
pad = (0,1,0,1)
|
| 144 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 145 |
+
x = self.conv(x)
|
| 146 |
+
else:
|
| 147 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 148 |
+
return x
|
| 149 |
+
|
| 150 |
+
class Upsample(nn.Module):
|
| 151 |
+
def __init__(self, in_channels, with_conv):
|
| 152 |
+
super().__init__()
|
| 153 |
+
self.with_conv = with_conv
|
| 154 |
+
self.in_channels = in_channels
|
| 155 |
+
if self.with_conv:
|
| 156 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 157 |
+
in_channels,
|
| 158 |
+
kernel_size=3,
|
| 159 |
+
stride=1,
|
| 160 |
+
padding=1)
|
| 161 |
+
|
| 162 |
+
def forward(self, x):
|
| 163 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 164 |
+
if self.with_conv:
|
| 165 |
+
x = self.conv(x)
|
| 166 |
+
return x
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class ResnetBlock(nn.Module):
|
| 170 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 171 |
+
dropout, temb_channels=512):
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.in_channels = in_channels
|
| 174 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 175 |
+
self.out_channels = out_channels
|
| 176 |
+
self.use_conv_shortcut = conv_shortcut
|
| 177 |
+
|
| 178 |
+
self.norm1 = Normalize(in_channels)
|
| 179 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 180 |
+
out_channels,
|
| 181 |
+
kernel_size=3,
|
| 182 |
+
stride=1,
|
| 183 |
+
padding=1)
|
| 184 |
+
if temb_channels > 0:
|
| 185 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 186 |
+
out_channels)
|
| 187 |
+
self.norm2 = Normalize(out_channels)
|
| 188 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 189 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 190 |
+
out_channels,
|
| 191 |
+
kernel_size=3,
|
| 192 |
+
stride=1,
|
| 193 |
+
padding=1)
|
| 194 |
+
if self.in_channels != self.out_channels:
|
| 195 |
+
if self.use_conv_shortcut:
|
| 196 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 197 |
+
out_channels,
|
| 198 |
+
kernel_size=3,
|
| 199 |
+
stride=1,
|
| 200 |
+
padding=1)
|
| 201 |
+
else:
|
| 202 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 203 |
+
out_channels,
|
| 204 |
+
kernel_size=1,
|
| 205 |
+
stride=1,
|
| 206 |
+
padding=0)
|
| 207 |
+
|
| 208 |
+
def forward(self, x, temb):
|
| 209 |
+
h = x
|
| 210 |
+
h = self.norm1(h)
|
| 211 |
+
h = nonlinearity(h)
|
| 212 |
+
h = self.conv1(h)
|
| 213 |
+
|
| 214 |
+
if temb is not None:
|
| 215 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 216 |
+
|
| 217 |
+
h = self.norm2(h)
|
| 218 |
+
h = nonlinearity(h)
|
| 219 |
+
h = self.dropout(h)
|
| 220 |
+
h = self.conv2(h)
|
| 221 |
+
|
| 222 |
+
if self.in_channels != self.out_channels:
|
| 223 |
+
if self.use_conv_shortcut:
|
| 224 |
+
x = self.conv_shortcut(x)
|
| 225 |
+
else:
|
| 226 |
+
x = self.nin_shortcut(x)
|
| 227 |
+
|
| 228 |
+
return x+h
|
| 229 |
+
|
| 230 |
+
class Model(nn.Module):
|
| 231 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 232 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 233 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
| 234 |
+
super().__init__()
|
| 235 |
+
if use_linear_attn: attn_type = "linear"
|
| 236 |
+
self.ch = ch
|
| 237 |
+
self.temb_ch = self.ch*4
|
| 238 |
+
self.num_resolutions = len(ch_mult)
|
| 239 |
+
self.num_res_blocks = num_res_blocks
|
| 240 |
+
self.resolution = resolution
|
| 241 |
+
self.in_channels = in_channels
|
| 242 |
+
|
| 243 |
+
self.use_timestep = use_timestep
|
| 244 |
+
if self.use_timestep:
|
| 245 |
+
# timestep embedding
|
| 246 |
+
self.temb = nn.Module()
|
| 247 |
+
self.temb.dense = nn.ModuleList([
|
| 248 |
+
torch.nn.Linear(self.ch,
|
| 249 |
+
self.temb_ch),
|
| 250 |
+
torch.nn.Linear(self.temb_ch,
|
| 251 |
+
self.temb_ch),
|
| 252 |
+
])
|
| 253 |
+
|
| 254 |
+
# downsampling
|
| 255 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 256 |
+
self.ch,
|
| 257 |
+
kernel_size=3,
|
| 258 |
+
stride=1,
|
| 259 |
+
padding=1)
|
| 260 |
+
|
| 261 |
+
curr_res = resolution
|
| 262 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 263 |
+
self.down = nn.ModuleList()
|
| 264 |
+
for i_level in range(self.num_resolutions):
|
| 265 |
+
block = nn.ModuleList()
|
| 266 |
+
attn = nn.ModuleList()
|
| 267 |
+
block_in = ch*in_ch_mult[i_level]
|
| 268 |
+
block_out = ch*ch_mult[i_level]
|
| 269 |
+
for i_block in range(self.num_res_blocks):
|
| 270 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 271 |
+
out_channels=block_out,
|
| 272 |
+
temb_channels=self.temb_ch,
|
| 273 |
+
dropout=dropout))
|
| 274 |
+
block_in = block_out
|
| 275 |
+
if curr_res in attn_resolutions:
|
| 276 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 277 |
+
down = nn.Module()
|
| 278 |
+
down.block = block
|
| 279 |
+
down.attn = attn
|
| 280 |
+
if i_level != self.num_resolutions-1:
|
| 281 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 282 |
+
curr_res = curr_res // 2
|
| 283 |
+
self.down.append(down)
|
| 284 |
+
|
| 285 |
+
# middle
|
| 286 |
+
self.mid = nn.Module()
|
| 287 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 288 |
+
out_channels=block_in,
|
| 289 |
+
temb_channels=self.temb_ch,
|
| 290 |
+
dropout=dropout)
|
| 291 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 292 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 293 |
+
out_channels=block_in,
|
| 294 |
+
temb_channels=self.temb_ch,
|
| 295 |
+
dropout=dropout)
|
| 296 |
+
|
| 297 |
+
# upsampling
|
| 298 |
+
self.up = nn.ModuleList()
|
| 299 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 300 |
+
block = nn.ModuleList()
|
| 301 |
+
attn = nn.ModuleList()
|
| 302 |
+
block_out = ch*ch_mult[i_level]
|
| 303 |
+
skip_in = ch*ch_mult[i_level]
|
| 304 |
+
for i_block in range(self.num_res_blocks+1):
|
| 305 |
+
if i_block == self.num_res_blocks:
|
| 306 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 307 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 308 |
+
out_channels=block_out,
|
| 309 |
+
temb_channels=self.temb_ch,
|
| 310 |
+
dropout=dropout))
|
| 311 |
+
block_in = block_out
|
| 312 |
+
if curr_res in attn_resolutions:
|
| 313 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 314 |
+
up = nn.Module()
|
| 315 |
+
up.block = block
|
| 316 |
+
up.attn = attn
|
| 317 |
+
if i_level != 0:
|
| 318 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 319 |
+
curr_res = curr_res * 2
|
| 320 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 321 |
+
|
| 322 |
+
# end
|
| 323 |
+
self.norm_out = Normalize(block_in)
|
| 324 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 325 |
+
out_ch,
|
| 326 |
+
kernel_size=3,
|
| 327 |
+
stride=1,
|
| 328 |
+
padding=1)
|
| 329 |
+
|
| 330 |
+
def forward(self, x, t=None, context=None):
|
| 331 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 332 |
+
if context is not None:
|
| 333 |
+
# assume aligned context, cat along channel axis
|
| 334 |
+
x = torch.cat((x, context), dim=1)
|
| 335 |
+
if self.use_timestep:
|
| 336 |
+
# timestep embedding
|
| 337 |
+
assert t is not None
|
| 338 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 339 |
+
temb = self.temb.dense[0](temb)
|
| 340 |
+
temb = nonlinearity(temb)
|
| 341 |
+
temb = self.temb.dense[1](temb)
|
| 342 |
+
else:
|
| 343 |
+
temb = None
|
| 344 |
+
|
| 345 |
+
# downsampling
|
| 346 |
+
hs = [self.conv_in(x)]
|
| 347 |
+
for i_level in range(self.num_resolutions):
|
| 348 |
+
for i_block in range(self.num_res_blocks):
|
| 349 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 350 |
+
if len(self.down[i_level].attn) > 0:
|
| 351 |
+
h = self.down[i_level].attn[i_block](h)
|
| 352 |
+
hs.append(h)
|
| 353 |
+
if i_level != self.num_resolutions-1:
|
| 354 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 355 |
+
|
| 356 |
+
# middle
|
| 357 |
+
h = hs[-1]
|
| 358 |
+
h = self.mid.block_1(h, temb)
|
| 359 |
+
h = self.mid.attn_1(h)
|
| 360 |
+
h = self.mid.block_2(h, temb)
|
| 361 |
+
|
| 362 |
+
# upsampling
|
| 363 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 364 |
+
for i_block in range(self.num_res_blocks+1):
|
| 365 |
+
h = self.up[i_level].block[i_block](
|
| 366 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 367 |
+
if len(self.up[i_level].attn) > 0:
|
| 368 |
+
h = self.up[i_level].attn[i_block](h)
|
| 369 |
+
if i_level != 0:
|
| 370 |
+
h = self.up[i_level].upsample(h)
|
| 371 |
+
|
| 372 |
+
# end
|
| 373 |
+
h = self.norm_out(h)
|
| 374 |
+
h = nonlinearity(h)
|
| 375 |
+
h = self.conv_out(h)
|
| 376 |
+
return h
|
| 377 |
+
|
| 378 |
+
def get_last_layer(self):
|
| 379 |
+
return self.conv_out.weight
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
class Encoder(nn.Module):
|
| 383 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 384 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 385 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
| 386 |
+
**ignore_kwargs):
|
| 387 |
+
super().__init__()
|
| 388 |
+
if use_linear_attn: attn_type = "linear"
|
| 389 |
+
self.ch = ch
|
| 390 |
+
self.temb_ch = 0
|
| 391 |
+
self.num_resolutions = len(ch_mult)
|
| 392 |
+
self.num_res_blocks = num_res_blocks
|
| 393 |
+
self.resolution = resolution
|
| 394 |
+
self.in_channels = in_channels
|
| 395 |
+
|
| 396 |
+
# downsampling
|
| 397 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 398 |
+
self.ch,
|
| 399 |
+
kernel_size=3,
|
| 400 |
+
stride=1,
|
| 401 |
+
padding=1)
|
| 402 |
+
|
| 403 |
+
curr_res = resolution
|
| 404 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 405 |
+
self.in_ch_mult = in_ch_mult
|
| 406 |
+
self.down = nn.ModuleList()
|
| 407 |
+
for i_level in range(self.num_resolutions):
|
| 408 |
+
block = nn.ModuleList()
|
| 409 |
+
attn = nn.ModuleList()
|
| 410 |
+
block_in = ch*in_ch_mult[i_level]
|
| 411 |
+
block_out = ch*ch_mult[i_level]
|
| 412 |
+
for i_block in range(self.num_res_blocks):
|
| 413 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 414 |
+
out_channels=block_out,
|
| 415 |
+
temb_channels=self.temb_ch,
|
| 416 |
+
dropout=dropout))
|
| 417 |
+
block_in = block_out
|
| 418 |
+
if curr_res in attn_resolutions:
|
| 419 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 420 |
+
down = nn.Module()
|
| 421 |
+
down.block = block
|
| 422 |
+
down.attn = attn
|
| 423 |
+
if i_level != self.num_resolutions-1:
|
| 424 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 425 |
+
curr_res = curr_res // 2
|
| 426 |
+
self.down.append(down)
|
| 427 |
+
|
| 428 |
+
# middle
|
| 429 |
+
self.mid = nn.Module()
|
| 430 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 431 |
+
out_channels=block_in,
|
| 432 |
+
temb_channels=self.temb_ch,
|
| 433 |
+
dropout=dropout)
|
| 434 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 435 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 436 |
+
out_channels=block_in,
|
| 437 |
+
temb_channels=self.temb_ch,
|
| 438 |
+
dropout=dropout)
|
| 439 |
+
|
| 440 |
+
# end
|
| 441 |
+
self.norm_out = Normalize(block_in)
|
| 442 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 443 |
+
2*z_channels if double_z else z_channels,
|
| 444 |
+
kernel_size=3,
|
| 445 |
+
stride=1,
|
| 446 |
+
padding=1)
|
| 447 |
+
|
| 448 |
+
def forward(self, x):
|
| 449 |
+
# timestep embedding
|
| 450 |
+
temb = None
|
| 451 |
+
|
| 452 |
+
# print(f'encoder-input={x.shape}')
|
| 453 |
+
# downsampling
|
| 454 |
+
hs = [self.conv_in(x)]
|
| 455 |
+
# print(f'encoder-conv in feat={hs[0].shape}')
|
| 456 |
+
for i_level in range(self.num_resolutions):
|
| 457 |
+
for i_block in range(self.num_res_blocks):
|
| 458 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 459 |
+
# print(f'encoder-down feat={h.shape}')
|
| 460 |
+
if len(self.down[i_level].attn) > 0:
|
| 461 |
+
h = self.down[i_level].attn[i_block](h)
|
| 462 |
+
hs.append(h)
|
| 463 |
+
if i_level != self.num_resolutions-1:
|
| 464 |
+
# print(f'encoder-downsample (input)={hs[-1].shape}')
|
| 465 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 466 |
+
# print(f'encoder-downsample (output)={hs[-1].shape}')
|
| 467 |
+
|
| 468 |
+
# middle
|
| 469 |
+
h = hs[-1]
|
| 470 |
+
h = self.mid.block_1(h, temb)
|
| 471 |
+
# print(f'encoder-mid1 feat={h.shape}')
|
| 472 |
+
h = self.mid.attn_1(h)
|
| 473 |
+
h = self.mid.block_2(h, temb)
|
| 474 |
+
# print(f'encoder-mid2 feat={h.shape}')
|
| 475 |
+
|
| 476 |
+
# end
|
| 477 |
+
h = self.norm_out(h)
|
| 478 |
+
h = nonlinearity(h)
|
| 479 |
+
h = self.conv_out(h)
|
| 480 |
+
# print(f'end feat={h.shape}')
|
| 481 |
+
return h
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class Decoder(nn.Module):
|
| 485 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 486 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 487 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
| 488 |
+
attn_type="vanilla", **ignorekwargs):
|
| 489 |
+
super().__init__()
|
| 490 |
+
if use_linear_attn: attn_type = "linear"
|
| 491 |
+
self.ch = ch
|
| 492 |
+
self.temb_ch = 0
|
| 493 |
+
self.num_resolutions = len(ch_mult)
|
| 494 |
+
self.num_res_blocks = num_res_blocks
|
| 495 |
+
self.resolution = resolution
|
| 496 |
+
self.in_channels = in_channels
|
| 497 |
+
self.give_pre_end = give_pre_end
|
| 498 |
+
self.tanh_out = tanh_out
|
| 499 |
+
|
| 500 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 501 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 502 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 503 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 504 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 505 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 506 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 507 |
+
|
| 508 |
+
# z to block_in
|
| 509 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 510 |
+
block_in,
|
| 511 |
+
kernel_size=3,
|
| 512 |
+
stride=1,
|
| 513 |
+
padding=1)
|
| 514 |
+
|
| 515 |
+
# middle
|
| 516 |
+
self.mid = nn.Module()
|
| 517 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 518 |
+
out_channels=block_in,
|
| 519 |
+
temb_channels=self.temb_ch,
|
| 520 |
+
dropout=dropout)
|
| 521 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 522 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 523 |
+
out_channels=block_in,
|
| 524 |
+
temb_channels=self.temb_ch,
|
| 525 |
+
dropout=dropout)
|
| 526 |
+
|
| 527 |
+
# upsampling
|
| 528 |
+
self.up = nn.ModuleList()
|
| 529 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 530 |
+
block = nn.ModuleList()
|
| 531 |
+
attn = nn.ModuleList()
|
| 532 |
+
block_out = ch*ch_mult[i_level]
|
| 533 |
+
for i_block in range(self.num_res_blocks+1):
|
| 534 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 535 |
+
out_channels=block_out,
|
| 536 |
+
temb_channels=self.temb_ch,
|
| 537 |
+
dropout=dropout))
|
| 538 |
+
block_in = block_out
|
| 539 |
+
if curr_res in attn_resolutions:
|
| 540 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 541 |
+
up = nn.Module()
|
| 542 |
+
up.block = block
|
| 543 |
+
up.attn = attn
|
| 544 |
+
if i_level != 0:
|
| 545 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 546 |
+
curr_res = curr_res * 2
|
| 547 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 548 |
+
|
| 549 |
+
# end
|
| 550 |
+
self.norm_out = Normalize(block_in)
|
| 551 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 552 |
+
out_ch,
|
| 553 |
+
kernel_size=3,
|
| 554 |
+
stride=1,
|
| 555 |
+
padding=1)
|
| 556 |
+
|
| 557 |
+
def forward(self, z):
|
| 558 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 559 |
+
self.last_z_shape = z.shape
|
| 560 |
+
|
| 561 |
+
# print(f'decoder-input={z.shape}')
|
| 562 |
+
# timestep embedding
|
| 563 |
+
temb = None
|
| 564 |
+
|
| 565 |
+
# z to block_in
|
| 566 |
+
h = self.conv_in(z)
|
| 567 |
+
# print(f'decoder-conv in feat={h.shape}')
|
| 568 |
+
|
| 569 |
+
# middle
|
| 570 |
+
h = self.mid.block_1(h, temb)
|
| 571 |
+
h = self.mid.attn_1(h)
|
| 572 |
+
h = self.mid.block_2(h, temb)
|
| 573 |
+
# print(f'decoder-mid feat={h.shape}')
|
| 574 |
+
|
| 575 |
+
# upsampling
|
| 576 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 577 |
+
for i_block in range(self.num_res_blocks+1):
|
| 578 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 579 |
+
if len(self.up[i_level].attn) > 0:
|
| 580 |
+
h = self.up[i_level].attn[i_block](h)
|
| 581 |
+
# print(f'decoder-up feat={h.shape}')
|
| 582 |
+
if i_level != 0:
|
| 583 |
+
h = self.up[i_level].upsample(h)
|
| 584 |
+
# print(f'decoder-upsample feat={h.shape}')
|
| 585 |
+
|
| 586 |
+
# end
|
| 587 |
+
if self.give_pre_end:
|
| 588 |
+
return h
|
| 589 |
+
|
| 590 |
+
h = self.norm_out(h)
|
| 591 |
+
h = nonlinearity(h)
|
| 592 |
+
h = self.conv_out(h)
|
| 593 |
+
# print(f'decoder-conv_out feat={h.shape}')
|
| 594 |
+
if self.tanh_out:
|
| 595 |
+
h = torch.tanh(h)
|
| 596 |
+
return h
|
lvdm/models/modules/condition_modules.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from transformers import logging
|
| 3 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 4 |
+
logging.set_verbosity_error()
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class AbstractEncoder(nn.Module):
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
def encode(self, *args, **kwargs):
|
| 12 |
+
raise NotImplementedError
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
| 16 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
| 17 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 20 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
| 21 |
+
self.device = device
|
| 22 |
+
self.max_length = max_length
|
| 23 |
+
self.freeze()
|
| 24 |
+
|
| 25 |
+
def freeze(self):
|
| 26 |
+
self.transformer = self.transformer.eval()
|
| 27 |
+
for param in self.parameters():
|
| 28 |
+
param.requires_grad = False
|
| 29 |
+
|
| 30 |
+
def forward(self, text):
|
| 31 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 32 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 33 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 34 |
+
outputs = self.transformer(input_ids=tokens)
|
| 35 |
+
|
| 36 |
+
z = outputs.last_hidden_state
|
| 37 |
+
return z
|
| 38 |
+
|
| 39 |
+
def encode(self, text):
|
| 40 |
+
return self(text)
|
lvdm/models/modules/distributions.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class DiagonalGaussianDistribution(object):
|
| 6 |
+
def __init__(self, parameters, deterministic=False):
|
| 7 |
+
self.parameters = parameters
|
| 8 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 9 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 10 |
+
self.deterministic = deterministic
|
| 11 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 12 |
+
self.var = torch.exp(self.logvar)
|
| 13 |
+
if self.deterministic:
|
| 14 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
| 15 |
+
|
| 16 |
+
def sample(self, noise=None):
|
| 17 |
+
if noise is None:
|
| 18 |
+
noise = torch.randn(self.mean.shape)
|
| 19 |
+
|
| 20 |
+
x = self.mean + self.std * noise.to(device=self.parameters.device)
|
| 21 |
+
return x
|
| 22 |
+
|
| 23 |
+
def kl(self, other=None):
|
| 24 |
+
if self.deterministic:
|
| 25 |
+
return torch.Tensor([0.])
|
| 26 |
+
else:
|
| 27 |
+
if other is None:
|
| 28 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
| 29 |
+
+ self.var - 1.0 - self.logvar,
|
| 30 |
+
dim=[1, 2, 3])
|
| 31 |
+
else:
|
| 32 |
+
return 0.5 * torch.sum(
|
| 33 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 34 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 35 |
+
dim=[1, 2, 3])
|
| 36 |
+
|
| 37 |
+
def nll(self, sample, dims=[1,2,3]):
|
| 38 |
+
if self.deterministic:
|
| 39 |
+
return torch.Tensor([0.])
|
| 40 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 41 |
+
return 0.5 * torch.sum(
|
| 42 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 43 |
+
dim=dims)
|
| 44 |
+
|
| 45 |
+
def mode(self):
|
| 46 |
+
return self.mean
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 50 |
+
"""
|
| 51 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 52 |
+
Compute the KL divergence between two gaussians.
|
| 53 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 54 |
+
scalars, among other use cases.
|
| 55 |
+
"""
|
| 56 |
+
tensor = None
|
| 57 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 58 |
+
if isinstance(obj, torch.Tensor):
|
| 59 |
+
tensor = obj
|
| 60 |
+
break
|
| 61 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 62 |
+
|
| 63 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 64 |
+
# Tensors, but it does not work for torch.exp().
|
| 65 |
+
logvar1, logvar2 = [
|
| 66 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 67 |
+
for x in (logvar1, logvar2)
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
return 0.5 * (
|
| 71 |
+
-1.0
|
| 72 |
+
+ logvar2
|
| 73 |
+
- logvar1
|
| 74 |
+
+ torch.exp(logvar1 - logvar2)
|
| 75 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 76 |
+
)
|
lvdm/models/modules/lora.py
ADDED
|
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from itertools import groupby
|
| 3 |
+
from typing import Dict, List, Optional, Set, Tuple, Type, Union
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
# try:
|
| 11 |
+
# from safetensors.torch import safe_open
|
| 12 |
+
# from safetensors.torch import save_file as safe_save
|
| 13 |
+
|
| 14 |
+
# safetensors_available = True
|
| 15 |
+
# except ImportError:
|
| 16 |
+
# from .safe_open import safe_open
|
| 17 |
+
|
| 18 |
+
# def safe_save(
|
| 19 |
+
# tensors: Dict[str, torch.Tensor],
|
| 20 |
+
# filename: str,
|
| 21 |
+
# metadata: Optional[Dict[str, str]] = None,
|
| 22 |
+
# ) -> None:
|
| 23 |
+
# raise EnvironmentError(
|
| 24 |
+
# "Saving safetensors requires the safetensors library. Please install with pip or similar."
|
| 25 |
+
# )
|
| 26 |
+
|
| 27 |
+
# safetensors_available = False
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class LoraInjectedLinear(nn.Module):
|
| 31 |
+
def __init__(
|
| 32 |
+
self, in_features, out_features, bias=False, r=4, dropout_p=0.1, scale=1.0
|
| 33 |
+
):
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
if r > min(in_features, out_features):
|
| 37 |
+
raise ValueError(
|
| 38 |
+
f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
| 39 |
+
)
|
| 40 |
+
self.r = r
|
| 41 |
+
self.linear = nn.Linear(in_features, out_features, bias)
|
| 42 |
+
self.lora_down = nn.Linear(in_features, r, bias=False)
|
| 43 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 44 |
+
self.lora_up = nn.Linear(r, out_features, bias=False)
|
| 45 |
+
self.scale = scale
|
| 46 |
+
self.selector = nn.Identity()
|
| 47 |
+
|
| 48 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
| 49 |
+
nn.init.zeros_(self.lora_up.weight)
|
| 50 |
+
|
| 51 |
+
def forward(self, input):
|
| 52 |
+
return (
|
| 53 |
+
self.linear(input)
|
| 54 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
| 55 |
+
* self.scale
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def realize_as_lora(self):
|
| 59 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
| 60 |
+
|
| 61 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
| 62 |
+
# diag is a 1D tensor of size (r,)
|
| 63 |
+
assert diag.shape == (self.r,)
|
| 64 |
+
self.selector = nn.Linear(self.r, self.r, bias=False)
|
| 65 |
+
self.selector.weight.data = torch.diag(diag)
|
| 66 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
| 67 |
+
self.lora_up.weight.device
|
| 68 |
+
).to(self.lora_up.weight.dtype)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class LoraInjectedConv2d(nn.Module):
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
in_channels: int,
|
| 75 |
+
out_channels: int,
|
| 76 |
+
kernel_size,
|
| 77 |
+
stride=1,
|
| 78 |
+
padding=0,
|
| 79 |
+
dilation=1,
|
| 80 |
+
groups: int = 1,
|
| 81 |
+
bias: bool = True,
|
| 82 |
+
r: int = 4,
|
| 83 |
+
dropout_p: float = 0.1,
|
| 84 |
+
scale: float = 1.0,
|
| 85 |
+
):
|
| 86 |
+
super().__init__()
|
| 87 |
+
if r > min(in_channels, out_channels):
|
| 88 |
+
raise ValueError(
|
| 89 |
+
f"LoRA rank {r} must be less or equal than {min(in_channels, out_channels)}"
|
| 90 |
+
)
|
| 91 |
+
self.r = r
|
| 92 |
+
self.conv = nn.Conv2d(
|
| 93 |
+
in_channels=in_channels,
|
| 94 |
+
out_channels=out_channels,
|
| 95 |
+
kernel_size=kernel_size,
|
| 96 |
+
stride=stride,
|
| 97 |
+
padding=padding,
|
| 98 |
+
dilation=dilation,
|
| 99 |
+
groups=groups,
|
| 100 |
+
bias=bias,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
self.lora_down = nn.Conv2d(
|
| 104 |
+
in_channels=in_channels,
|
| 105 |
+
out_channels=r,
|
| 106 |
+
kernel_size=kernel_size,
|
| 107 |
+
stride=stride,
|
| 108 |
+
padding=padding,
|
| 109 |
+
dilation=dilation,
|
| 110 |
+
groups=groups,
|
| 111 |
+
bias=False,
|
| 112 |
+
)
|
| 113 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 114 |
+
self.lora_up = nn.Conv2d(
|
| 115 |
+
in_channels=r,
|
| 116 |
+
out_channels=out_channels,
|
| 117 |
+
kernel_size=1,
|
| 118 |
+
stride=1,
|
| 119 |
+
padding=0,
|
| 120 |
+
bias=False,
|
| 121 |
+
)
|
| 122 |
+
self.selector = nn.Identity()
|
| 123 |
+
self.scale = scale
|
| 124 |
+
|
| 125 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
| 126 |
+
nn.init.zeros_(self.lora_up.weight)
|
| 127 |
+
|
| 128 |
+
def forward(self, input):
|
| 129 |
+
return (
|
| 130 |
+
self.conv(input)
|
| 131 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
| 132 |
+
* self.scale
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def realize_as_lora(self):
|
| 136 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
| 137 |
+
|
| 138 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
| 139 |
+
# diag is a 1D tensor of size (r,)
|
| 140 |
+
assert diag.shape == (self.r,)
|
| 141 |
+
self.selector = nn.Conv2d(
|
| 142 |
+
in_channels=self.r,
|
| 143 |
+
out_channels=self.r,
|
| 144 |
+
kernel_size=1,
|
| 145 |
+
stride=1,
|
| 146 |
+
padding=0,
|
| 147 |
+
bias=False,
|
| 148 |
+
)
|
| 149 |
+
self.selector.weight.data = torch.diag(diag)
|
| 150 |
+
|
| 151 |
+
# same device + dtype as lora_up
|
| 152 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
| 153 |
+
self.lora_up.weight.device
|
| 154 |
+
).to(self.lora_up.weight.dtype)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
UNET_DEFAULT_TARGET_REPLACE = {"MemoryEfficientCrossAttention","CrossAttention", "Attention", "GEGLU"}
|
| 158 |
+
|
| 159 |
+
UNET_EXTENDED_TARGET_REPLACE = {"TimestepEmbedSequential","SpatialTemporalTransformer", "MemoryEfficientCrossAttention","CrossAttention", "Attention", "GEGLU"}
|
| 160 |
+
|
| 161 |
+
TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}
|
| 162 |
+
|
| 163 |
+
TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPMLP","CLIPAttention"}
|
| 164 |
+
|
| 165 |
+
DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE
|
| 166 |
+
|
| 167 |
+
EMBED_FLAG = "<embed>"
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def _find_children(
|
| 171 |
+
model,
|
| 172 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
| 173 |
+
):
|
| 174 |
+
"""
|
| 175 |
+
Find all modules of a certain class (or union of classes).
|
| 176 |
+
|
| 177 |
+
Returns all matching modules, along with the parent of those moduless and the
|
| 178 |
+
names they are referenced by.
|
| 179 |
+
"""
|
| 180 |
+
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
| 181 |
+
for parent in model.modules():
|
| 182 |
+
for name, module in parent.named_children():
|
| 183 |
+
if any([isinstance(module, _class) for _class in search_class]):
|
| 184 |
+
yield parent, name, module
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def _find_modules_v2(
|
| 188 |
+
model,
|
| 189 |
+
ancestor_class: Optional[Set[str]] = None,
|
| 190 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
| 191 |
+
exclude_children_of: Optional[List[Type[nn.Module]]] = [
|
| 192 |
+
LoraInjectedLinear,
|
| 193 |
+
LoraInjectedConv2d,
|
| 194 |
+
],
|
| 195 |
+
):
|
| 196 |
+
"""
|
| 197 |
+
Find all modules of a certain class (or union of classes) that are direct or
|
| 198 |
+
indirect descendants of other modules of a certain class (or union of classes).
|
| 199 |
+
|
| 200 |
+
Returns all matching modules, along with the parent of those moduless and the
|
| 201 |
+
names they are referenced by.
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
# Get the targets we should replace all linears under
|
| 205 |
+
if type(ancestor_class) is not set:
|
| 206 |
+
ancestor_class = set(ancestor_class)
|
| 207 |
+
print(ancestor_class)
|
| 208 |
+
if ancestor_class is not None:
|
| 209 |
+
ancestors = (
|
| 210 |
+
module
|
| 211 |
+
for module in model.modules()
|
| 212 |
+
if module.__class__.__name__ in ancestor_class
|
| 213 |
+
)
|
| 214 |
+
else:
|
| 215 |
+
# this, incase you want to naively iterate over all modules.
|
| 216 |
+
ancestors = [module for module in model.modules()]
|
| 217 |
+
|
| 218 |
+
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
| 219 |
+
for ancestor in ancestors:
|
| 220 |
+
for fullname, module in ancestor.named_children():
|
| 221 |
+
if any([isinstance(module, _class) for _class in search_class]):
|
| 222 |
+
# Find the direct parent if this is a descendant, not a child, of target
|
| 223 |
+
*path, name = fullname.split(".")
|
| 224 |
+
parent = ancestor
|
| 225 |
+
while path:
|
| 226 |
+
parent = parent.get_submodule(path.pop(0))
|
| 227 |
+
# Skip this linear if it's a child of a LoraInjectedLinear
|
| 228 |
+
if exclude_children_of and any(
|
| 229 |
+
[isinstance(parent, _class) for _class in exclude_children_of]
|
| 230 |
+
):
|
| 231 |
+
continue
|
| 232 |
+
# Otherwise, yield it
|
| 233 |
+
yield parent, name, module
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def _find_modules_old(
|
| 237 |
+
model,
|
| 238 |
+
ancestor_class: Set[str] = DEFAULT_TARGET_REPLACE,
|
| 239 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
| 240 |
+
exclude_children_of: Optional[List[Type[nn.Module]]] = [LoraInjectedLinear],
|
| 241 |
+
):
|
| 242 |
+
ret = []
|
| 243 |
+
for _module in model.modules():
|
| 244 |
+
if _module.__class__.__name__ in ancestor_class:
|
| 245 |
+
|
| 246 |
+
for name, _child_module in _module.named_children():
|
| 247 |
+
if _child_module.__class__ in search_class:
|
| 248 |
+
ret.append((_module, name, _child_module))
|
| 249 |
+
print(ret)
|
| 250 |
+
return ret
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
_find_modules = _find_modules_v2
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def inject_trainable_lora(
|
| 257 |
+
model: nn.Module,
|
| 258 |
+
target_replace_module: Set[str] = DEFAULT_TARGET_REPLACE,
|
| 259 |
+
r: int = 4,
|
| 260 |
+
loras=None, # path to lora .pt
|
| 261 |
+
verbose: bool = False,
|
| 262 |
+
dropout_p: float = 0.0,
|
| 263 |
+
scale: float = 1.0,
|
| 264 |
+
):
|
| 265 |
+
"""
|
| 266 |
+
inject lora into model, and returns lora parameter groups.
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
require_grad_params = []
|
| 270 |
+
names = []
|
| 271 |
+
|
| 272 |
+
if loras != None:
|
| 273 |
+
loras = torch.load(loras)
|
| 274 |
+
|
| 275 |
+
for _module, name, _child_module in _find_modules(
|
| 276 |
+
model, target_replace_module, search_class=[nn.Linear]
|
| 277 |
+
):
|
| 278 |
+
weight = _child_module.weight
|
| 279 |
+
bias = _child_module.bias
|
| 280 |
+
if verbose:
|
| 281 |
+
print("LoRA Injection : injecting lora into ", name)
|
| 282 |
+
print("LoRA Injection : weight shape", weight.shape)
|
| 283 |
+
_tmp = LoraInjectedLinear(
|
| 284 |
+
_child_module.in_features,
|
| 285 |
+
_child_module.out_features,
|
| 286 |
+
_child_module.bias is not None,
|
| 287 |
+
r=r,
|
| 288 |
+
dropout_p=dropout_p,
|
| 289 |
+
scale=scale,
|
| 290 |
+
)
|
| 291 |
+
_tmp.linear.weight = weight
|
| 292 |
+
if bias is not None:
|
| 293 |
+
_tmp.linear.bias = bias
|
| 294 |
+
|
| 295 |
+
# switch the module
|
| 296 |
+
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
| 297 |
+
_module._modules[name] = _tmp
|
| 298 |
+
|
| 299 |
+
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
| 300 |
+
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
| 301 |
+
|
| 302 |
+
if loras != None:
|
| 303 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
| 304 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
| 305 |
+
|
| 306 |
+
_module._modules[name].lora_up.weight.requires_grad = True
|
| 307 |
+
_module._modules[name].lora_down.weight.requires_grad = True
|
| 308 |
+
names.append(name)
|
| 309 |
+
|
| 310 |
+
return require_grad_params, names
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def inject_trainable_lora_extended(
|
| 314 |
+
model: nn.Module,
|
| 315 |
+
target_replace_module: Set[str] = UNET_EXTENDED_TARGET_REPLACE,
|
| 316 |
+
r: int = 4,
|
| 317 |
+
loras=None, # path to lora .pt
|
| 318 |
+
):
|
| 319 |
+
"""
|
| 320 |
+
inject lora into model, and returns lora parameter groups.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
require_grad_params = []
|
| 324 |
+
names = []
|
| 325 |
+
|
| 326 |
+
if loras != None:
|
| 327 |
+
loras = torch.load(loras)
|
| 328 |
+
|
| 329 |
+
for _module, name, _child_module in _find_modules(
|
| 330 |
+
model, target_replace_module, search_class=[nn.Linear, nn.Conv2d]
|
| 331 |
+
):
|
| 332 |
+
if _child_module.__class__ == nn.Linear:
|
| 333 |
+
weight = _child_module.weight
|
| 334 |
+
bias = _child_module.bias
|
| 335 |
+
_tmp = LoraInjectedLinear(
|
| 336 |
+
_child_module.in_features,
|
| 337 |
+
_child_module.out_features,
|
| 338 |
+
_child_module.bias is not None,
|
| 339 |
+
r=r,
|
| 340 |
+
)
|
| 341 |
+
_tmp.linear.weight = weight
|
| 342 |
+
if bias is not None:
|
| 343 |
+
_tmp.linear.bias = bias
|
| 344 |
+
elif _child_module.__class__ == nn.Conv2d:
|
| 345 |
+
weight = _child_module.weight
|
| 346 |
+
bias = _child_module.bias
|
| 347 |
+
_tmp = LoraInjectedConv2d(
|
| 348 |
+
_child_module.in_channels,
|
| 349 |
+
_child_module.out_channels,
|
| 350 |
+
_child_module.kernel_size,
|
| 351 |
+
_child_module.stride,
|
| 352 |
+
_child_module.padding,
|
| 353 |
+
_child_module.dilation,
|
| 354 |
+
_child_module.groups,
|
| 355 |
+
_child_module.bias is not None,
|
| 356 |
+
r=r,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
_tmp.conv.weight = weight
|
| 360 |
+
if bias is not None:
|
| 361 |
+
_tmp.conv.bias = bias
|
| 362 |
+
|
| 363 |
+
# switch the module
|
| 364 |
+
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
| 365 |
+
if bias is not None:
|
| 366 |
+
_tmp.to(_child_module.bias.device).to(_child_module.bias.dtype)
|
| 367 |
+
|
| 368 |
+
_module._modules[name] = _tmp
|
| 369 |
+
|
| 370 |
+
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
| 371 |
+
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
| 372 |
+
|
| 373 |
+
if loras != None:
|
| 374 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
| 375 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
| 376 |
+
|
| 377 |
+
_module._modules[name].lora_up.weight.requires_grad = True
|
| 378 |
+
_module._modules[name].lora_down.weight.requires_grad = True
|
| 379 |
+
names.append(name)
|
| 380 |
+
|
| 381 |
+
return require_grad_params, names
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def extract_lora_ups_down(model, target_replace_module=DEFAULT_TARGET_REPLACE):
|
| 385 |
+
|
| 386 |
+
loras = []
|
| 387 |
+
|
| 388 |
+
for _m, _n, _child_module in _find_modules(
|
| 389 |
+
model,
|
| 390 |
+
target_replace_module,
|
| 391 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
| 392 |
+
):
|
| 393 |
+
loras.append((_child_module.lora_up, _child_module.lora_down))
|
| 394 |
+
|
| 395 |
+
if len(loras) == 0:
|
| 396 |
+
raise ValueError("No lora injected.")
|
| 397 |
+
|
| 398 |
+
return loras
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def extract_lora_as_tensor(
|
| 402 |
+
model, target_replace_module=DEFAULT_TARGET_REPLACE, as_fp16=True
|
| 403 |
+
):
|
| 404 |
+
|
| 405 |
+
loras = []
|
| 406 |
+
|
| 407 |
+
for _m, _n, _child_module in _find_modules(
|
| 408 |
+
model,
|
| 409 |
+
target_replace_module,
|
| 410 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
| 411 |
+
):
|
| 412 |
+
up, down = _child_module.realize_as_lora()
|
| 413 |
+
if as_fp16:
|
| 414 |
+
up = up.to(torch.float16)
|
| 415 |
+
down = down.to(torch.float16)
|
| 416 |
+
|
| 417 |
+
loras.append((up, down))
|
| 418 |
+
|
| 419 |
+
if len(loras) == 0:
|
| 420 |
+
raise ValueError("No lora injected.")
|
| 421 |
+
|
| 422 |
+
return loras
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def save_lora_weight(
|
| 426 |
+
model,
|
| 427 |
+
path="./lora.pt",
|
| 428 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
| 429 |
+
):
|
| 430 |
+
weights = []
|
| 431 |
+
for _up, _down in extract_lora_ups_down(
|
| 432 |
+
model, target_replace_module=target_replace_module
|
| 433 |
+
):
|
| 434 |
+
weights.append(_up.weight.to("cpu").to(torch.float16))
|
| 435 |
+
weights.append(_down.weight.to("cpu").to(torch.float16))
|
| 436 |
+
|
| 437 |
+
torch.save(weights, path)
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
def save_lora_as_json(model, path="./lora.json"):
|
| 441 |
+
weights = []
|
| 442 |
+
for _up, _down in extract_lora_ups_down(model):
|
| 443 |
+
weights.append(_up.weight.detach().cpu().numpy().tolist())
|
| 444 |
+
weights.append(_down.weight.detach().cpu().numpy().tolist())
|
| 445 |
+
|
| 446 |
+
import json
|
| 447 |
+
|
| 448 |
+
with open(path, "w") as f:
|
| 449 |
+
json.dump(weights, f)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
def save_safeloras_with_embeds(
|
| 453 |
+
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
| 454 |
+
embeds: Dict[str, torch.Tensor] = {},
|
| 455 |
+
outpath="./lora.safetensors",
|
| 456 |
+
):
|
| 457 |
+
"""
|
| 458 |
+
Saves the Lora from multiple modules in a single safetensor file.
|
| 459 |
+
|
| 460 |
+
modelmap is a dictionary of {
|
| 461 |
+
"module name": (module, target_replace_module)
|
| 462 |
+
}
|
| 463 |
+
"""
|
| 464 |
+
weights = {}
|
| 465 |
+
metadata = {}
|
| 466 |
+
|
| 467 |
+
for name, (model, target_replace_module) in modelmap.items():
|
| 468 |
+
metadata[name] = json.dumps(list(target_replace_module))
|
| 469 |
+
|
| 470 |
+
for i, (_up, _down) in enumerate(
|
| 471 |
+
extract_lora_as_tensor(model, target_replace_module)
|
| 472 |
+
):
|
| 473 |
+
rank = _down.shape[0]
|
| 474 |
+
|
| 475 |
+
metadata[f"{name}:{i}:rank"] = str(rank)
|
| 476 |
+
weights[f"{name}:{i}:up"] = _up
|
| 477 |
+
weights[f"{name}:{i}:down"] = _down
|
| 478 |
+
|
| 479 |
+
for token, tensor in embeds.items():
|
| 480 |
+
metadata[token] = EMBED_FLAG
|
| 481 |
+
weights[token] = tensor
|
| 482 |
+
|
| 483 |
+
print(f"Saving weights to {outpath}")
|
| 484 |
+
safe_save(weights, outpath, metadata)
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def save_safeloras(
|
| 488 |
+
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
| 489 |
+
outpath="./lora.safetensors",
|
| 490 |
+
):
|
| 491 |
+
return save_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def convert_loras_to_safeloras_with_embeds(
|
| 495 |
+
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
| 496 |
+
embeds: Dict[str, torch.Tensor] = {},
|
| 497 |
+
outpath="./lora.safetensors",
|
| 498 |
+
):
|
| 499 |
+
"""
|
| 500 |
+
Converts the Lora from multiple pytorch .pt files into a single safetensor file.
|
| 501 |
+
|
| 502 |
+
modelmap is a dictionary of {
|
| 503 |
+
"module name": (pytorch_model_path, target_replace_module, rank)
|
| 504 |
+
}
|
| 505 |
+
"""
|
| 506 |
+
|
| 507 |
+
weights = {}
|
| 508 |
+
metadata = {}
|
| 509 |
+
|
| 510 |
+
for name, (path, target_replace_module, r) in modelmap.items():
|
| 511 |
+
metadata[name] = json.dumps(list(target_replace_module))
|
| 512 |
+
|
| 513 |
+
lora = torch.load(path)
|
| 514 |
+
for i, weight in enumerate(lora):
|
| 515 |
+
is_up = i % 2 == 0
|
| 516 |
+
i = i // 2
|
| 517 |
+
|
| 518 |
+
if is_up:
|
| 519 |
+
metadata[f"{name}:{i}:rank"] = str(r)
|
| 520 |
+
weights[f"{name}:{i}:up"] = weight
|
| 521 |
+
else:
|
| 522 |
+
weights[f"{name}:{i}:down"] = weight
|
| 523 |
+
|
| 524 |
+
for token, tensor in embeds.items():
|
| 525 |
+
metadata[token] = EMBED_FLAG
|
| 526 |
+
weights[token] = tensor
|
| 527 |
+
|
| 528 |
+
print(f"Saving weights to {outpath}")
|
| 529 |
+
safe_save(weights, outpath, metadata)
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
def convert_loras_to_safeloras(
|
| 533 |
+
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
| 534 |
+
outpath="./lora.safetensors",
|
| 535 |
+
):
|
| 536 |
+
convert_loras_to_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def parse_safeloras(
|
| 540 |
+
safeloras,
|
| 541 |
+
) -> Dict[str, Tuple[List[nn.parameter.Parameter], List[int], List[str]]]:
|
| 542 |
+
"""
|
| 543 |
+
Converts a loaded safetensor file that contains a set of module Loras
|
| 544 |
+
into Parameters and other information
|
| 545 |
+
|
| 546 |
+
Output is a dictionary of {
|
| 547 |
+
"module name": (
|
| 548 |
+
[list of weights],
|
| 549 |
+
[list of ranks],
|
| 550 |
+
target_replacement_modules
|
| 551 |
+
)
|
| 552 |
+
}
|
| 553 |
+
"""
|
| 554 |
+
loras = {}
|
| 555 |
+
metadata = safeloras.metadata()
|
| 556 |
+
|
| 557 |
+
get_name = lambda k: k.split(":")[0]
|
| 558 |
+
|
| 559 |
+
keys = list(safeloras.keys())
|
| 560 |
+
keys.sort(key=get_name)
|
| 561 |
+
|
| 562 |
+
for name, module_keys in groupby(keys, get_name):
|
| 563 |
+
info = metadata.get(name)
|
| 564 |
+
|
| 565 |
+
if not info:
|
| 566 |
+
raise ValueError(
|
| 567 |
+
f"Tensor {name} has no metadata - is this a Lora safetensor?"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
# Skip Textual Inversion embeds
|
| 571 |
+
if info == EMBED_FLAG:
|
| 572 |
+
continue
|
| 573 |
+
|
| 574 |
+
# Handle Loras
|
| 575 |
+
# Extract the targets
|
| 576 |
+
target = json.loads(info)
|
| 577 |
+
|
| 578 |
+
# Build the result lists - Python needs us to preallocate lists to insert into them
|
| 579 |
+
module_keys = list(module_keys)
|
| 580 |
+
ranks = [4] * (len(module_keys) // 2)
|
| 581 |
+
weights = [None] * len(module_keys)
|
| 582 |
+
|
| 583 |
+
for key in module_keys:
|
| 584 |
+
# Split the model name and index out of the key
|
| 585 |
+
_, idx, direction = key.split(":")
|
| 586 |
+
idx = int(idx)
|
| 587 |
+
|
| 588 |
+
# Add the rank
|
| 589 |
+
ranks[idx] = int(metadata[f"{name}:{idx}:rank"])
|
| 590 |
+
|
| 591 |
+
# Insert the weight into the list
|
| 592 |
+
idx = idx * 2 + (1 if direction == "down" else 0)
|
| 593 |
+
weights[idx] = nn.parameter.Parameter(safeloras.get_tensor(key))
|
| 594 |
+
|
| 595 |
+
loras[name] = (weights, ranks, target)
|
| 596 |
+
|
| 597 |
+
return loras
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def parse_safeloras_embeds(
|
| 601 |
+
safeloras,
|
| 602 |
+
) -> Dict[str, torch.Tensor]:
|
| 603 |
+
"""
|
| 604 |
+
Converts a loaded safetensor file that contains Textual Inversion embeds into
|
| 605 |
+
a dictionary of embed_token: Tensor
|
| 606 |
+
"""
|
| 607 |
+
embeds = {}
|
| 608 |
+
metadata = safeloras.metadata()
|
| 609 |
+
|
| 610 |
+
for key in safeloras.keys():
|
| 611 |
+
# Only handle Textual Inversion embeds
|
| 612 |
+
meta = metadata.get(key)
|
| 613 |
+
if not meta or meta != EMBED_FLAG:
|
| 614 |
+
continue
|
| 615 |
+
|
| 616 |
+
embeds[key] = safeloras.get_tensor(key)
|
| 617 |
+
|
| 618 |
+
return embeds
|
| 619 |
+
|
| 620 |
+
def net_load_lora(net, checkpoint_path, alpha=1.0, remove=False):
|
| 621 |
+
visited=[]
|
| 622 |
+
state_dict = torch.load(checkpoint_path)
|
| 623 |
+
for k, v in state_dict.items():
|
| 624 |
+
state_dict[k] = v.to(net.device)
|
| 625 |
+
# import pdb;pdb.set_trace()
|
| 626 |
+
for key in state_dict:
|
| 627 |
+
if ".alpha" in key or key in visited:
|
| 628 |
+
continue
|
| 629 |
+
layer_infos = key.split(".")[:-2] # remove lora_up and down weight
|
| 630 |
+
curr_layer = net
|
| 631 |
+
# find the target layer
|
| 632 |
+
temp_name = layer_infos.pop(0)
|
| 633 |
+
while len(layer_infos) > -1:
|
| 634 |
+
curr_layer = curr_layer.__getattr__(temp_name)
|
| 635 |
+
if len(layer_infos) > 0:
|
| 636 |
+
temp_name = layer_infos.pop(0)
|
| 637 |
+
elif len(layer_infos) == 0:
|
| 638 |
+
break
|
| 639 |
+
if curr_layer.__class__ not in [nn.Linear, nn.Conv2d]:
|
| 640 |
+
print('missing param at:', key)
|
| 641 |
+
continue
|
| 642 |
+
pair_keys = []
|
| 643 |
+
if "lora_down" in key:
|
| 644 |
+
pair_keys.append(key.replace("lora_down", "lora_up"))
|
| 645 |
+
pair_keys.append(key)
|
| 646 |
+
else:
|
| 647 |
+
pair_keys.append(key)
|
| 648 |
+
pair_keys.append(key.replace("lora_up", "lora_down"))
|
| 649 |
+
|
| 650 |
+
# update weight
|
| 651 |
+
if len(state_dict[pair_keys[0]].shape) == 4:
|
| 652 |
+
# for conv
|
| 653 |
+
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
| 654 |
+
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
| 655 |
+
if remove:
|
| 656 |
+
curr_layer.weight.data -= alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 657 |
+
else:
|
| 658 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
| 659 |
+
else:
|
| 660 |
+
# for linear
|
| 661 |
+
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
| 662 |
+
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
| 663 |
+
if remove:
|
| 664 |
+
curr_layer.weight.data -= alpha * torch.mm(weight_up, weight_down)
|
| 665 |
+
else:
|
| 666 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
| 667 |
+
|
| 668 |
+
# update visited list
|
| 669 |
+
for item in pair_keys:
|
| 670 |
+
visited.append(item)
|
| 671 |
+
print('load_weight_num:',len(visited))
|
| 672 |
+
return
|
| 673 |
+
|
| 674 |
+
def change_lora(model, inject_lora=False, lora_scale=1.0, lora_path='', last_time_lora='', last_time_lora_scale=1.0):
|
| 675 |
+
# remove lora
|
| 676 |
+
if last_time_lora != '':
|
| 677 |
+
net_load_lora(model, last_time_lora, alpha=last_time_lora_scale, remove=True)
|
| 678 |
+
# add new lora
|
| 679 |
+
if inject_lora:
|
| 680 |
+
net_load_lora(model, lora_path, alpha=lora_scale)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
def load_safeloras(path, device="cpu"):
|
| 685 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
| 686 |
+
return parse_safeloras(safeloras)
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
def load_safeloras_embeds(path, device="cpu"):
|
| 690 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
| 691 |
+
return parse_safeloras_embeds(safeloras)
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
def load_safeloras_both(path, device="cpu"):
|
| 695 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
| 696 |
+
return parse_safeloras(safeloras), parse_safeloras_embeds(safeloras)
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
def collapse_lora(model, alpha=1.0):
|
| 700 |
+
|
| 701 |
+
for _module, name, _child_module in _find_modules(
|
| 702 |
+
model,
|
| 703 |
+
UNET_EXTENDED_TARGET_REPLACE | TEXT_ENCODER_EXTENDED_TARGET_REPLACE,
|
| 704 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d],
|
| 705 |
+
):
|
| 706 |
+
|
| 707 |
+
if isinstance(_child_module, LoraInjectedLinear):
|
| 708 |
+
print("Collapsing Lin Lora in", name)
|
| 709 |
+
|
| 710 |
+
_child_module.linear.weight = nn.Parameter(
|
| 711 |
+
_child_module.linear.weight.data
|
| 712 |
+
+ alpha
|
| 713 |
+
* (
|
| 714 |
+
_child_module.lora_up.weight.data
|
| 715 |
+
@ _child_module.lora_down.weight.data
|
| 716 |
+
)
|
| 717 |
+
.type(_child_module.linear.weight.dtype)
|
| 718 |
+
.to(_child_module.linear.weight.device)
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
else:
|
| 722 |
+
print("Collapsing Conv Lora in", name)
|
| 723 |
+
_child_module.conv.weight = nn.Parameter(
|
| 724 |
+
_child_module.conv.weight.data
|
| 725 |
+
+ alpha
|
| 726 |
+
* (
|
| 727 |
+
_child_module.lora_up.weight.data.flatten(start_dim=1)
|
| 728 |
+
@ _child_module.lora_down.weight.data.flatten(start_dim=1)
|
| 729 |
+
)
|
| 730 |
+
.reshape(_child_module.conv.weight.data.shape)
|
| 731 |
+
.type(_child_module.conv.weight.dtype)
|
| 732 |
+
.to(_child_module.conv.weight.device)
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
def monkeypatch_or_replace_lora(
|
| 737 |
+
model,
|
| 738 |
+
loras,
|
| 739 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
| 740 |
+
r: Union[int, List[int]] = 4,
|
| 741 |
+
):
|
| 742 |
+
for _module, name, _child_module in _find_modules(
|
| 743 |
+
model, target_replace_module, search_class=[nn.Linear, LoraInjectedLinear]
|
| 744 |
+
):
|
| 745 |
+
_source = (
|
| 746 |
+
_child_module.linear
|
| 747 |
+
if isinstance(_child_module, LoraInjectedLinear)
|
| 748 |
+
else _child_module
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
weight = _source.weight
|
| 752 |
+
bias = _source.bias
|
| 753 |
+
_tmp = LoraInjectedLinear(
|
| 754 |
+
_source.in_features,
|
| 755 |
+
_source.out_features,
|
| 756 |
+
_source.bias is not None,
|
| 757 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
| 758 |
+
)
|
| 759 |
+
_tmp.linear.weight = weight
|
| 760 |
+
|
| 761 |
+
if bias is not None:
|
| 762 |
+
_tmp.linear.bias = bias
|
| 763 |
+
|
| 764 |
+
# switch the module
|
| 765 |
+
_module._modules[name] = _tmp
|
| 766 |
+
|
| 767 |
+
up_weight = loras.pop(0)
|
| 768 |
+
down_weight = loras.pop(0)
|
| 769 |
+
|
| 770 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
| 771 |
+
up_weight.type(weight.dtype)
|
| 772 |
+
)
|
| 773 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
| 774 |
+
down_weight.type(weight.dtype)
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
_module._modules[name].to(weight.device)
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
def monkeypatch_or_replace_lora_extended(
|
| 781 |
+
model,
|
| 782 |
+
loras,
|
| 783 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
| 784 |
+
r: Union[int, List[int]] = 4,
|
| 785 |
+
):
|
| 786 |
+
for _module, name, _child_module in _find_modules(
|
| 787 |
+
model,
|
| 788 |
+
target_replace_module,
|
| 789 |
+
search_class=[nn.Linear, LoraInjectedLinear, nn.Conv2d, LoraInjectedConv2d],
|
| 790 |
+
):
|
| 791 |
+
|
| 792 |
+
if (_child_module.__class__ == nn.Linear) or (
|
| 793 |
+
_child_module.__class__ == LoraInjectedLinear
|
| 794 |
+
):
|
| 795 |
+
if len(loras[0].shape) != 2:
|
| 796 |
+
continue
|
| 797 |
+
|
| 798 |
+
_source = (
|
| 799 |
+
_child_module.linear
|
| 800 |
+
if isinstance(_child_module, LoraInjectedLinear)
|
| 801 |
+
else _child_module
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
weight = _source.weight
|
| 805 |
+
bias = _source.bias
|
| 806 |
+
_tmp = LoraInjectedLinear(
|
| 807 |
+
_source.in_features,
|
| 808 |
+
_source.out_features,
|
| 809 |
+
_source.bias is not None,
|
| 810 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
| 811 |
+
)
|
| 812 |
+
_tmp.linear.weight = weight
|
| 813 |
+
|
| 814 |
+
if bias is not None:
|
| 815 |
+
_tmp.linear.bias = bias
|
| 816 |
+
|
| 817 |
+
elif (_child_module.__class__ == nn.Conv2d) or (
|
| 818 |
+
_child_module.__class__ == LoraInjectedConv2d
|
| 819 |
+
):
|
| 820 |
+
if len(loras[0].shape) != 4:
|
| 821 |
+
continue
|
| 822 |
+
_source = (
|
| 823 |
+
_child_module.conv
|
| 824 |
+
if isinstance(_child_module, LoraInjectedConv2d)
|
| 825 |
+
else _child_module
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
weight = _source.weight
|
| 829 |
+
bias = _source.bias
|
| 830 |
+
_tmp = LoraInjectedConv2d(
|
| 831 |
+
_source.in_channels,
|
| 832 |
+
_source.out_channels,
|
| 833 |
+
_source.kernel_size,
|
| 834 |
+
_source.stride,
|
| 835 |
+
_source.padding,
|
| 836 |
+
_source.dilation,
|
| 837 |
+
_source.groups,
|
| 838 |
+
_source.bias is not None,
|
| 839 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
_tmp.conv.weight = weight
|
| 843 |
+
|
| 844 |
+
if bias is not None:
|
| 845 |
+
_tmp.conv.bias = bias
|
| 846 |
+
|
| 847 |
+
# switch the module
|
| 848 |
+
_module._modules[name] = _tmp
|
| 849 |
+
|
| 850 |
+
up_weight = loras.pop(0)
|
| 851 |
+
down_weight = loras.pop(0)
|
| 852 |
+
|
| 853 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
| 854 |
+
up_weight.type(weight.dtype)
|
| 855 |
+
)
|
| 856 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
| 857 |
+
down_weight.type(weight.dtype)
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
_module._modules[name].to(weight.device)
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
def monkeypatch_or_replace_safeloras(models, safeloras):
|
| 864 |
+
loras = parse_safeloras(safeloras)
|
| 865 |
+
|
| 866 |
+
for name, (lora, ranks, target) in loras.items():
|
| 867 |
+
model = getattr(models, name, None)
|
| 868 |
+
|
| 869 |
+
if not model:
|
| 870 |
+
print(f"No model provided for {name}, contained in Lora")
|
| 871 |
+
continue
|
| 872 |
+
|
| 873 |
+
monkeypatch_or_replace_lora_extended(model, lora, target, ranks)
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
def monkeypatch_remove_lora(model):
|
| 877 |
+
for _module, name, _child_module in _find_modules(
|
| 878 |
+
model, search_class=[LoraInjectedLinear, LoraInjectedConv2d]
|
| 879 |
+
):
|
| 880 |
+
if isinstance(_child_module, LoraInjectedLinear):
|
| 881 |
+
_source = _child_module.linear
|
| 882 |
+
weight, bias = _source.weight, _source.bias
|
| 883 |
+
|
| 884 |
+
_tmp = nn.Linear(
|
| 885 |
+
_source.in_features, _source.out_features, bias is not None
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
_tmp.weight = weight
|
| 889 |
+
if bias is not None:
|
| 890 |
+
_tmp.bias = bias
|
| 891 |
+
|
| 892 |
+
else:
|
| 893 |
+
_source = _child_module.conv
|
| 894 |
+
weight, bias = _source.weight, _source.bias
|
| 895 |
+
|
| 896 |
+
_tmp = nn.Conv2d(
|
| 897 |
+
in_channels=_source.in_channels,
|
| 898 |
+
out_channels=_source.out_channels,
|
| 899 |
+
kernel_size=_source.kernel_size,
|
| 900 |
+
stride=_source.stride,
|
| 901 |
+
padding=_source.padding,
|
| 902 |
+
dilation=_source.dilation,
|
| 903 |
+
groups=_source.groups,
|
| 904 |
+
bias=bias is not None,
|
| 905 |
+
)
|
| 906 |
+
|
| 907 |
+
_tmp.weight = weight
|
| 908 |
+
if bias is not None:
|
| 909 |
+
_tmp.bias = bias
|
| 910 |
+
|
| 911 |
+
_module._modules[name] = _tmp
|
| 912 |
+
|
| 913 |
+
|
| 914 |
+
def monkeypatch_add_lora(
|
| 915 |
+
model,
|
| 916 |
+
loras,
|
| 917 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
| 918 |
+
alpha: float = 1.0,
|
| 919 |
+
beta: float = 1.0,
|
| 920 |
+
):
|
| 921 |
+
for _module, name, _child_module in _find_modules(
|
| 922 |
+
model, target_replace_module, search_class=[LoraInjectedLinear]
|
| 923 |
+
):
|
| 924 |
+
weight = _child_module.linear.weight
|
| 925 |
+
|
| 926 |
+
up_weight = loras.pop(0)
|
| 927 |
+
down_weight = loras.pop(0)
|
| 928 |
+
|
| 929 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
| 930 |
+
up_weight.type(weight.dtype).to(weight.device) * alpha
|
| 931 |
+
+ _module._modules[name].lora_up.weight.to(weight.device) * beta
|
| 932 |
+
)
|
| 933 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
| 934 |
+
down_weight.type(weight.dtype).to(weight.device) * alpha
|
| 935 |
+
+ _module._modules[name].lora_down.weight.to(weight.device) * beta
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
_module._modules[name].to(weight.device)
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
def tune_lora_scale(model, alpha: float = 1.0):
|
| 942 |
+
for _module in model.modules():
|
| 943 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
| 944 |
+
_module.scale = alpha
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
def set_lora_diag(model, diag: torch.Tensor):
|
| 948 |
+
for _module in model.modules():
|
| 949 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
| 950 |
+
_module.set_selector_from_diag(diag)
|
| 951 |
+
|
| 952 |
+
|
| 953 |
+
def _text_lora_path(path: str) -> str:
|
| 954 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
| 955 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
def _ti_lora_path(path: str) -> str:
|
| 959 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
| 960 |
+
return ".".join(path.split(".")[:-1] + ["ti", "pt"])
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
def apply_learned_embed_in_clip(
|
| 964 |
+
learned_embeds,
|
| 965 |
+
text_encoder,
|
| 966 |
+
tokenizer,
|
| 967 |
+
token: Optional[Union[str, List[str]]] = None,
|
| 968 |
+
idempotent=False,
|
| 969 |
+
):
|
| 970 |
+
if isinstance(token, str):
|
| 971 |
+
trained_tokens = [token]
|
| 972 |
+
elif isinstance(token, list):
|
| 973 |
+
assert len(learned_embeds.keys()) == len(
|
| 974 |
+
token
|
| 975 |
+
), "The number of tokens and the number of embeds should be the same"
|
| 976 |
+
trained_tokens = token
|
| 977 |
+
else:
|
| 978 |
+
trained_tokens = list(learned_embeds.keys())
|
| 979 |
+
|
| 980 |
+
for token in trained_tokens:
|
| 981 |
+
print(token)
|
| 982 |
+
embeds = learned_embeds[token]
|
| 983 |
+
|
| 984 |
+
# cast to dtype of text_encoder
|
| 985 |
+
dtype = text_encoder.get_input_embeddings().weight.dtype
|
| 986 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
| 987 |
+
|
| 988 |
+
i = 1
|
| 989 |
+
if not idempotent:
|
| 990 |
+
while num_added_tokens == 0:
|
| 991 |
+
print(f"The tokenizer already contains the token {token}.")
|
| 992 |
+
token = f"{token[:-1]}-{i}>"
|
| 993 |
+
print(f"Attempting to add the token {token}.")
|
| 994 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
| 995 |
+
i += 1
|
| 996 |
+
elif num_added_tokens == 0 and idempotent:
|
| 997 |
+
print(f"The tokenizer already contains the token {token}.")
|
| 998 |
+
print(f"Replacing {token} embedding.")
|
| 999 |
+
|
| 1000 |
+
# resize the token embeddings
|
| 1001 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 1002 |
+
|
| 1003 |
+
# get the id for the token and assign the embeds
|
| 1004 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
| 1005 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
| 1006 |
+
return token
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
def load_learned_embed_in_clip(
|
| 1010 |
+
learned_embeds_path,
|
| 1011 |
+
text_encoder,
|
| 1012 |
+
tokenizer,
|
| 1013 |
+
token: Optional[Union[str, List[str]]] = None,
|
| 1014 |
+
idempotent=False,
|
| 1015 |
+
):
|
| 1016 |
+
learned_embeds = torch.load(learned_embeds_path)
|
| 1017 |
+
apply_learned_embed_in_clip(
|
| 1018 |
+
learned_embeds, text_encoder, tokenizer, token, idempotent
|
| 1019 |
+
)
|
| 1020 |
+
|
| 1021 |
+
|
| 1022 |
+
def patch_pipe(
|
| 1023 |
+
pipe,
|
| 1024 |
+
maybe_unet_path,
|
| 1025 |
+
token: Optional[str] = None,
|
| 1026 |
+
r: int = 4,
|
| 1027 |
+
patch_unet=True,
|
| 1028 |
+
patch_text=True,
|
| 1029 |
+
patch_ti=True,
|
| 1030 |
+
idempotent_token=True,
|
| 1031 |
+
unet_target_replace_module=DEFAULT_TARGET_REPLACE,
|
| 1032 |
+
text_target_replace_module=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
| 1033 |
+
):
|
| 1034 |
+
if maybe_unet_path.endswith(".pt"):
|
| 1035 |
+
# torch format
|
| 1036 |
+
|
| 1037 |
+
if maybe_unet_path.endswith(".ti.pt"):
|
| 1038 |
+
unet_path = maybe_unet_path[:-6] + ".pt"
|
| 1039 |
+
elif maybe_unet_path.endswith(".text_encoder.pt"):
|
| 1040 |
+
unet_path = maybe_unet_path[:-16] + ".pt"
|
| 1041 |
+
else:
|
| 1042 |
+
unet_path = maybe_unet_path
|
| 1043 |
+
|
| 1044 |
+
ti_path = _ti_lora_path(unet_path)
|
| 1045 |
+
text_path = _text_lora_path(unet_path)
|
| 1046 |
+
|
| 1047 |
+
if patch_unet:
|
| 1048 |
+
print("LoRA : Patching Unet")
|
| 1049 |
+
monkeypatch_or_replace_lora(
|
| 1050 |
+
pipe.unet,
|
| 1051 |
+
torch.load(unet_path),
|
| 1052 |
+
r=r,
|
| 1053 |
+
target_replace_module=unet_target_replace_module,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
if patch_text:
|
| 1057 |
+
print("LoRA : Patching text encoder")
|
| 1058 |
+
monkeypatch_or_replace_lora(
|
| 1059 |
+
pipe.text_encoder,
|
| 1060 |
+
torch.load(text_path),
|
| 1061 |
+
target_replace_module=text_target_replace_module,
|
| 1062 |
+
r=r,
|
| 1063 |
+
)
|
| 1064 |
+
if patch_ti:
|
| 1065 |
+
print("LoRA : Patching token input")
|
| 1066 |
+
token = load_learned_embed_in_clip(
|
| 1067 |
+
ti_path,
|
| 1068 |
+
pipe.text_encoder,
|
| 1069 |
+
pipe.tokenizer,
|
| 1070 |
+
token=token,
|
| 1071 |
+
idempotent=idempotent_token,
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
elif maybe_unet_path.endswith(".safetensors"):
|
| 1075 |
+
safeloras = safe_open(maybe_unet_path, framework="pt", device="cpu")
|
| 1076 |
+
monkeypatch_or_replace_safeloras(pipe, safeloras)
|
| 1077 |
+
tok_dict = parse_safeloras_embeds(safeloras)
|
| 1078 |
+
if patch_ti:
|
| 1079 |
+
apply_learned_embed_in_clip(
|
| 1080 |
+
tok_dict,
|
| 1081 |
+
pipe.text_encoder,
|
| 1082 |
+
pipe.tokenizer,
|
| 1083 |
+
token=token,
|
| 1084 |
+
idempotent=idempotent_token,
|
| 1085 |
+
)
|
| 1086 |
+
return tok_dict
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
@torch.no_grad()
|
| 1090 |
+
def inspect_lora(model):
|
| 1091 |
+
moved = {}
|
| 1092 |
+
|
| 1093 |
+
for name, _module in model.named_modules():
|
| 1094 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d"]:
|
| 1095 |
+
ups = _module.lora_up.weight.data.clone()
|
| 1096 |
+
downs = _module.lora_down.weight.data.clone()
|
| 1097 |
+
|
| 1098 |
+
wght: torch.Tensor = ups.flatten(1) @ downs.flatten(1)
|
| 1099 |
+
|
| 1100 |
+
dist = wght.flatten().abs().mean().item()
|
| 1101 |
+
if name in moved:
|
| 1102 |
+
moved[name].append(dist)
|
| 1103 |
+
else:
|
| 1104 |
+
moved[name] = [dist]
|
| 1105 |
+
|
| 1106 |
+
return moved
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
def save_all(
|
| 1110 |
+
unet,
|
| 1111 |
+
text_encoder,
|
| 1112 |
+
save_path,
|
| 1113 |
+
placeholder_token_ids=None,
|
| 1114 |
+
placeholder_tokens=None,
|
| 1115 |
+
save_lora=True,
|
| 1116 |
+
save_ti=True,
|
| 1117 |
+
target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
| 1118 |
+
target_replace_module_unet=DEFAULT_TARGET_REPLACE,
|
| 1119 |
+
safe_form=True,
|
| 1120 |
+
):
|
| 1121 |
+
if not safe_form:
|
| 1122 |
+
# save ti
|
| 1123 |
+
if save_ti:
|
| 1124 |
+
ti_path = _ti_lora_path(save_path)
|
| 1125 |
+
learned_embeds_dict = {}
|
| 1126 |
+
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
| 1127 |
+
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
| 1128 |
+
print(
|
| 1129 |
+
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
| 1130 |
+
learned_embeds[:4],
|
| 1131 |
+
)
|
| 1132 |
+
learned_embeds_dict[tok] = learned_embeds.detach().cpu()
|
| 1133 |
+
|
| 1134 |
+
torch.save(learned_embeds_dict, ti_path)
|
| 1135 |
+
print("Ti saved to ", ti_path)
|
| 1136 |
+
|
| 1137 |
+
# save text encoder
|
| 1138 |
+
if save_lora:
|
| 1139 |
+
|
| 1140 |
+
save_lora_weight(
|
| 1141 |
+
unet, save_path, target_replace_module=target_replace_module_unet
|
| 1142 |
+
)
|
| 1143 |
+
print("Unet saved to ", save_path)
|
| 1144 |
+
|
| 1145 |
+
save_lora_weight(
|
| 1146 |
+
text_encoder,
|
| 1147 |
+
_text_lora_path(save_path),
|
| 1148 |
+
target_replace_module=target_replace_module_text,
|
| 1149 |
+
)
|
| 1150 |
+
print("Text Encoder saved to ", _text_lora_path(save_path))
|
| 1151 |
+
|
| 1152 |
+
else:
|
| 1153 |
+
assert save_path.endswith(
|
| 1154 |
+
".safetensors"
|
| 1155 |
+
), f"Save path : {save_path} should end with .safetensors"
|
| 1156 |
+
|
| 1157 |
+
loras = {}
|
| 1158 |
+
embeds = {}
|
| 1159 |
+
|
| 1160 |
+
if save_lora:
|
| 1161 |
+
|
| 1162 |
+
loras["unet"] = (unet, target_replace_module_unet)
|
| 1163 |
+
loras["text_encoder"] = (text_encoder, target_replace_module_text)
|
| 1164 |
+
|
| 1165 |
+
if save_ti:
|
| 1166 |
+
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
| 1167 |
+
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
| 1168 |
+
print(
|
| 1169 |
+
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
| 1170 |
+
learned_embeds[:4],
|
| 1171 |
+
)
|
| 1172 |
+
embeds[tok] = learned_embeds.detach().cpu()
|
| 1173 |
+
|
| 1174 |
+
save_safeloras_with_embeds(loras, embeds, save_path)
|
lvdm/models/modules/openaimodel3d.py
ADDED
|
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import math
|
| 3 |
+
from einops import rearrange
|
| 4 |
+
from functools import partial
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch as th
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from omegaconf.listconfig import ListConfig
|
| 10 |
+
|
| 11 |
+
from lvdm.models.modules.util import (
|
| 12 |
+
checkpoint,
|
| 13 |
+
conv_nd,
|
| 14 |
+
linear,
|
| 15 |
+
avg_pool_nd,
|
| 16 |
+
zero_module,
|
| 17 |
+
normalization,
|
| 18 |
+
timestep_embedding,
|
| 19 |
+
nonlinearity,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# dummy replace
|
| 23 |
+
def convert_module_to_f16(x):
|
| 24 |
+
pass
|
| 25 |
+
|
| 26 |
+
def convert_module_to_f32(x):
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
## go
|
| 30 |
+
# ---------------------------------------------------------------------------------------------------
|
| 31 |
+
class TimestepBlock(nn.Module):
|
| 32 |
+
"""
|
| 33 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
@abstractmethod
|
| 37 |
+
def forward(self, x, emb):
|
| 38 |
+
"""
|
| 39 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ---------------------------------------------------------------------------------------------------
|
| 44 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 45 |
+
"""
|
| 46 |
+
A sequential module that passes timestep embeddings to the children that
|
| 47 |
+
support it as an extra input.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
def forward(self, x, emb, context, **kwargs):
|
| 51 |
+
for layer in self:
|
| 52 |
+
if isinstance(layer, TimestepBlock):
|
| 53 |
+
x = layer(x, emb, **kwargs)
|
| 54 |
+
elif isinstance(layer, STTransformerClass):
|
| 55 |
+
x = layer(x, context, **kwargs)
|
| 56 |
+
else:
|
| 57 |
+
x = layer(x)
|
| 58 |
+
return x
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# ---------------------------------------------------------------------------------------------------
|
| 62 |
+
class Upsample(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
An upsampling layer with an optional convolution.
|
| 65 |
+
:param channels: channels in the inputs and outputs.
|
| 66 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 67 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 68 |
+
upsampling occurs in the inner-two dimensions.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,
|
| 72 |
+
kernel_size_t=3,
|
| 73 |
+
padding_t=1,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.channels = channels
|
| 77 |
+
self.out_channels = out_channels or channels
|
| 78 |
+
self.use_conv = use_conv
|
| 79 |
+
self.dims = dims
|
| 80 |
+
if use_conv:
|
| 81 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
assert x.shape[1] == self.channels
|
| 85 |
+
if self.dims == 3:
|
| 86 |
+
x = F.interpolate(
|
| 87 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 88 |
+
)
|
| 89 |
+
else:
|
| 90 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 91 |
+
if self.use_conv:
|
| 92 |
+
x = self.conv(x)
|
| 93 |
+
return x
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# ---------------------------------------------------------------------------------------------------
|
| 97 |
+
class TransposedUpsample(nn.Module):
|
| 98 |
+
'Learned 2x upsampling without padding'
|
| 99 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.channels = channels
|
| 102 |
+
self.out_channels = out_channels or channels
|
| 103 |
+
|
| 104 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
| 105 |
+
|
| 106 |
+
def forward(self,x):
|
| 107 |
+
return self.up(x)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# ---------------------------------------------------------------------------------------------------
|
| 111 |
+
class Downsample(nn.Module):
|
| 112 |
+
"""
|
| 113 |
+
A downsampling layer with an optional convolution.
|
| 114 |
+
:param channels: channels in the inputs and outputs.
|
| 115 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 116 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 117 |
+
downsampling occurs in the inner-two dimensions.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,
|
| 121 |
+
kernel_size_t=3,
|
| 122 |
+
padding_t=1,
|
| 123 |
+
):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.channels = channels
|
| 126 |
+
self.out_channels = out_channels or channels
|
| 127 |
+
self.use_conv = use_conv
|
| 128 |
+
self.dims = dims
|
| 129 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 130 |
+
if use_conv:
|
| 131 |
+
self.op = conv_nd(
|
| 132 |
+
dims, self.channels, self.out_channels, (kernel_size_t, 3,3), stride=stride, padding=(padding_t, 1,1)
|
| 133 |
+
)
|
| 134 |
+
else:
|
| 135 |
+
assert self.channels == self.out_channels
|
| 136 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 137 |
+
|
| 138 |
+
def forward(self, x):
|
| 139 |
+
assert x.shape[1] == self.channels
|
| 140 |
+
return self.op(x)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# ---------------------------------------------------------------------------------------------------
|
| 144 |
+
class ResBlock(TimestepBlock):
|
| 145 |
+
"""
|
| 146 |
+
A residual block that can optionally change the number of channels.
|
| 147 |
+
:param channels: the number of input channels.
|
| 148 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 149 |
+
:param dropout: the rate of dropout.
|
| 150 |
+
:param out_channels: if specified, the number of out channels.
|
| 151 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 152 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 153 |
+
channels in the skip connection.
|
| 154 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 155 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 156 |
+
:param up: if True, use this block for upsampling.
|
| 157 |
+
:param down: if True, use this block for downsampling.
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
def __init__(
|
| 161 |
+
self,
|
| 162 |
+
channels,
|
| 163 |
+
emb_channels,
|
| 164 |
+
dropout,
|
| 165 |
+
out_channels=None,
|
| 166 |
+
use_conv=False,
|
| 167 |
+
use_scale_shift_norm=False,
|
| 168 |
+
dims=2,
|
| 169 |
+
use_checkpoint=False,
|
| 170 |
+
up=False,
|
| 171 |
+
down=False,
|
| 172 |
+
# temporal
|
| 173 |
+
kernel_size_t=3,
|
| 174 |
+
padding_t=1,
|
| 175 |
+
nonlinearity_type='silu',
|
| 176 |
+
**kwargs
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
self.channels = channels
|
| 180 |
+
self.emb_channels = emb_channels
|
| 181 |
+
self.dropout = dropout
|
| 182 |
+
self.out_channels = out_channels or channels
|
| 183 |
+
self.use_conv = use_conv
|
| 184 |
+
self.use_checkpoint = use_checkpoint
|
| 185 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 186 |
+
self.nonlinearity_type = nonlinearity_type
|
| 187 |
+
|
| 188 |
+
self.in_layers = nn.Sequential(
|
| 189 |
+
normalization(channels),
|
| 190 |
+
nonlinearity(nonlinearity_type),
|
| 191 |
+
conv_nd(dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)),
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.updown = up or down
|
| 195 |
+
|
| 196 |
+
if up:
|
| 197 |
+
self.h_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
|
| 198 |
+
self.x_upd = Upsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
|
| 199 |
+
elif down:
|
| 200 |
+
self.h_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
|
| 201 |
+
self.x_upd = Downsample(channels, False, dims, kernel_size_t=kernel_size_t, padding_t=padding_t)
|
| 202 |
+
else:
|
| 203 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 204 |
+
|
| 205 |
+
self.emb_layers = nn.Sequential(
|
| 206 |
+
nonlinearity(nonlinearity_type),
|
| 207 |
+
linear(
|
| 208 |
+
emb_channels,
|
| 209 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 210 |
+
),
|
| 211 |
+
)
|
| 212 |
+
self.out_layers = nn.Sequential(
|
| 213 |
+
normalization(self.out_channels),
|
| 214 |
+
nonlinearity(nonlinearity_type),
|
| 215 |
+
nn.Dropout(p=dropout),
|
| 216 |
+
zero_module(
|
| 217 |
+
conv_nd(dims, self.out_channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
|
| 218 |
+
),
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
if self.out_channels == channels:
|
| 222 |
+
self.skip_connection = nn.Identity()
|
| 223 |
+
elif use_conv:
|
| 224 |
+
self.skip_connection = conv_nd(
|
| 225 |
+
dims, channels, self.out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1)
|
| 226 |
+
)
|
| 227 |
+
else:
|
| 228 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def forward(self, x, emb, **kwargs):
|
| 232 |
+
"""
|
| 233 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 234 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 235 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 236 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 237 |
+
"""
|
| 238 |
+
return checkpoint(self._forward,
|
| 239 |
+
(x, emb),
|
| 240 |
+
self.parameters(),
|
| 241 |
+
self.use_checkpoint
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
def _forward(self, x, emb,):
|
| 245 |
+
if self.updown:
|
| 246 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 247 |
+
h = in_rest(x)
|
| 248 |
+
h = self.h_upd(h)
|
| 249 |
+
x = self.x_upd(x)
|
| 250 |
+
h = in_conv(h)
|
| 251 |
+
else:
|
| 252 |
+
h = self.in_layers(x)
|
| 253 |
+
|
| 254 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 255 |
+
if emb_out.dim() == 3: # btc for video data
|
| 256 |
+
emb_out = rearrange(emb_out, 'b t c -> b c t')
|
| 257 |
+
while len(emb_out.shape) < h.dim():
|
| 258 |
+
emb_out = emb_out[..., None] # bct -> bct11 or bc -> bc111
|
| 259 |
+
|
| 260 |
+
if self.use_scale_shift_norm:
|
| 261 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 262 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 263 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 264 |
+
h = out_rest(h)
|
| 265 |
+
else:
|
| 266 |
+
h = h + emb_out
|
| 267 |
+
h = self.out_layers(h)
|
| 268 |
+
|
| 269 |
+
out = self.skip_connection(x) + h
|
| 270 |
+
|
| 271 |
+
return out
|
| 272 |
+
|
| 273 |
+
# ---------------------------------------------------------------------------------------------------
|
| 274 |
+
def make_spatialtemporal_transformer(module_name='attention_temporal', class_name='SpatialTemporalTransformer'):
|
| 275 |
+
module = __import__(f"lvdm.models.modules.{module_name}", fromlist=[class_name])
|
| 276 |
+
global STTransformerClass
|
| 277 |
+
STTransformerClass = getattr(module, class_name)
|
| 278 |
+
return STTransformerClass
|
| 279 |
+
|
| 280 |
+
# ---------------------------------------------------------------------------------------------------
|
| 281 |
+
class UNetModel(nn.Module):
|
| 282 |
+
"""
|
| 283 |
+
The full UNet model with attention and timestep embedding.
|
| 284 |
+
:param in_channels: channels in the input Tensor.
|
| 285 |
+
:param model_channels: base channel count for the model.
|
| 286 |
+
:param out_channels: channels in the output Tensor.
|
| 287 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 288 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 289 |
+
attention will take place. May be a set, list, or tuple.
|
| 290 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 291 |
+
will be used.
|
| 292 |
+
:param dropout: the dropout probability.
|
| 293 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 294 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 295 |
+
downsampling.
|
| 296 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 297 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 298 |
+
class-conditional with `num_classes` classes.
|
| 299 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 300 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 301 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 302 |
+
a fixed channel width per attention head.
|
| 303 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 304 |
+
of heads for upsampling. Deprecated.
|
| 305 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 306 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 307 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 308 |
+
increased efficiency.
|
| 309 |
+
"""
|
| 310 |
+
|
| 311 |
+
def __init__(
|
| 312 |
+
self,
|
| 313 |
+
image_size, # not used in UNetModel
|
| 314 |
+
in_channels,
|
| 315 |
+
model_channels,
|
| 316 |
+
out_channels,
|
| 317 |
+
num_res_blocks,
|
| 318 |
+
attention_resolutions,
|
| 319 |
+
dropout=0,
|
| 320 |
+
channel_mult=(1, 2, 4, 8),
|
| 321 |
+
conv_resample=True,
|
| 322 |
+
dims=3,
|
| 323 |
+
num_classes=None,
|
| 324 |
+
use_checkpoint=False,
|
| 325 |
+
use_fp16=False,
|
| 326 |
+
num_heads=-1,
|
| 327 |
+
num_head_channels=-1,
|
| 328 |
+
num_heads_upsample=-1,
|
| 329 |
+
use_scale_shift_norm=False,
|
| 330 |
+
resblock_updown=False,
|
| 331 |
+
transformer_depth=1, # custom transformer support
|
| 332 |
+
context_dim=None, # custom transformer support
|
| 333 |
+
legacy=True,
|
| 334 |
+
# temporal related
|
| 335 |
+
kernel_size_t=1,
|
| 336 |
+
padding_t=1,
|
| 337 |
+
use_temporal_transformer=True,
|
| 338 |
+
temporal_length=None,
|
| 339 |
+
use_relative_position=False,
|
| 340 |
+
cross_attn_on_tempoal=False,
|
| 341 |
+
temporal_crossattn_type="crossattn",
|
| 342 |
+
order="stst",
|
| 343 |
+
nonlinearity_type='silu',
|
| 344 |
+
temporalcrossfirst=False,
|
| 345 |
+
split_stcontext=False,
|
| 346 |
+
temporal_context_dim=None,
|
| 347 |
+
use_tempoal_causal_attn=False,
|
| 348 |
+
ST_transformer_module='attention_temporal',
|
| 349 |
+
ST_transformer_class='SpatialTemporalTransformer',
|
| 350 |
+
**kwargs,
|
| 351 |
+
):
|
| 352 |
+
super().__init__()
|
| 353 |
+
assert(use_temporal_transformer)
|
| 354 |
+
if context_dim is not None:
|
| 355 |
+
if type(context_dim) == ListConfig:
|
| 356 |
+
context_dim = list(context_dim)
|
| 357 |
+
|
| 358 |
+
if num_heads_upsample == -1:
|
| 359 |
+
num_heads_upsample = num_heads
|
| 360 |
+
|
| 361 |
+
if num_heads == -1:
|
| 362 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 363 |
+
|
| 364 |
+
if num_head_channels == -1:
|
| 365 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 366 |
+
|
| 367 |
+
self.image_size = image_size
|
| 368 |
+
self.in_channels = in_channels
|
| 369 |
+
self.model_channels = model_channels
|
| 370 |
+
self.out_channels = out_channels
|
| 371 |
+
self.num_res_blocks = num_res_blocks
|
| 372 |
+
self.attention_resolutions = attention_resolutions
|
| 373 |
+
self.dropout = dropout
|
| 374 |
+
self.channel_mult = channel_mult
|
| 375 |
+
self.conv_resample = conv_resample
|
| 376 |
+
self.num_classes = num_classes
|
| 377 |
+
self.use_checkpoint = use_checkpoint
|
| 378 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 379 |
+
self.num_heads = num_heads
|
| 380 |
+
self.num_head_channels = num_head_channels
|
| 381 |
+
self.num_heads_upsample = num_heads_upsample
|
| 382 |
+
|
| 383 |
+
self.use_relative_position = use_relative_position
|
| 384 |
+
self.temporal_length = temporal_length
|
| 385 |
+
self.cross_attn_on_tempoal = cross_attn_on_tempoal
|
| 386 |
+
self.temporal_crossattn_type = temporal_crossattn_type
|
| 387 |
+
self.order = order
|
| 388 |
+
self.temporalcrossfirst = temporalcrossfirst
|
| 389 |
+
self.split_stcontext = split_stcontext
|
| 390 |
+
self.temporal_context_dim = temporal_context_dim
|
| 391 |
+
self.nonlinearity_type = nonlinearity_type
|
| 392 |
+
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
time_embed_dim = model_channels * 4
|
| 396 |
+
self.time_embed_dim = time_embed_dim
|
| 397 |
+
self.time_embed = nn.Sequential(
|
| 398 |
+
linear(model_channels, time_embed_dim),
|
| 399 |
+
nonlinearity(nonlinearity_type),
|
| 400 |
+
linear(time_embed_dim, time_embed_dim),
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
if self.num_classes is not None:
|
| 404 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 405 |
+
|
| 406 |
+
STTransformerClass = make_spatialtemporal_transformer(module_name=ST_transformer_module,
|
| 407 |
+
class_name=ST_transformer_class)
|
| 408 |
+
|
| 409 |
+
self.input_blocks = nn.ModuleList(
|
| 410 |
+
[
|
| 411 |
+
TimestepEmbedSequential(
|
| 412 |
+
conv_nd(dims, in_channels, model_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))
|
| 413 |
+
)
|
| 414 |
+
]
|
| 415 |
+
)
|
| 416 |
+
self._feature_size = model_channels
|
| 417 |
+
input_block_chans = [model_channels]
|
| 418 |
+
ch = model_channels
|
| 419 |
+
ds = 1
|
| 420 |
+
for level, mult in enumerate(channel_mult):
|
| 421 |
+
for _ in range(num_res_blocks):
|
| 422 |
+
layers = [
|
| 423 |
+
ResBlock(
|
| 424 |
+
ch,
|
| 425 |
+
time_embed_dim,
|
| 426 |
+
dropout,
|
| 427 |
+
out_channels=mult * model_channels,
|
| 428 |
+
dims=dims,
|
| 429 |
+
use_checkpoint=use_checkpoint,
|
| 430 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 431 |
+
kernel_size_t=kernel_size_t,
|
| 432 |
+
padding_t=padding_t,
|
| 433 |
+
nonlinearity_type=nonlinearity_type,
|
| 434 |
+
**kwargs
|
| 435 |
+
)
|
| 436 |
+
]
|
| 437 |
+
ch = mult * model_channels
|
| 438 |
+
if ds in attention_resolutions:
|
| 439 |
+
if num_head_channels == -1:
|
| 440 |
+
dim_head = ch // num_heads
|
| 441 |
+
else:
|
| 442 |
+
num_heads = ch // num_head_channels
|
| 443 |
+
dim_head = num_head_channels
|
| 444 |
+
if legacy:
|
| 445 |
+
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
|
| 446 |
+
layers.append(STTransformerClass(
|
| 447 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 448 |
+
# temporal related
|
| 449 |
+
temporal_length=temporal_length,
|
| 450 |
+
use_relative_position=use_relative_position,
|
| 451 |
+
cross_attn_on_tempoal=cross_attn_on_tempoal,
|
| 452 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
| 453 |
+
order=order,
|
| 454 |
+
temporalcrossfirst=temporalcrossfirst,
|
| 455 |
+
split_stcontext=split_stcontext,
|
| 456 |
+
temporal_context_dim=temporal_context_dim,
|
| 457 |
+
use_tempoal_causal_attn=use_tempoal_causal_attn,
|
| 458 |
+
**kwargs,
|
| 459 |
+
))
|
| 460 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 461 |
+
self._feature_size += ch
|
| 462 |
+
input_block_chans.append(ch)
|
| 463 |
+
if level != len(channel_mult) - 1:
|
| 464 |
+
out_ch = ch
|
| 465 |
+
self.input_blocks.append(
|
| 466 |
+
TimestepEmbedSequential(
|
| 467 |
+
ResBlock(
|
| 468 |
+
ch,
|
| 469 |
+
time_embed_dim,
|
| 470 |
+
dropout,
|
| 471 |
+
out_channels=out_ch,
|
| 472 |
+
dims=dims,
|
| 473 |
+
use_checkpoint=use_checkpoint,
|
| 474 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 475 |
+
down=True,
|
| 476 |
+
kernel_size_t=kernel_size_t,
|
| 477 |
+
padding_t=padding_t,
|
| 478 |
+
nonlinearity_type=nonlinearity_type,
|
| 479 |
+
**kwargs
|
| 480 |
+
)
|
| 481 |
+
if resblock_updown
|
| 482 |
+
else Downsample(
|
| 483 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t
|
| 484 |
+
)
|
| 485 |
+
)
|
| 486 |
+
)
|
| 487 |
+
ch = out_ch
|
| 488 |
+
input_block_chans.append(ch)
|
| 489 |
+
ds *= 2
|
| 490 |
+
self._feature_size += ch
|
| 491 |
+
|
| 492 |
+
if num_head_channels == -1:
|
| 493 |
+
dim_head = ch // num_heads
|
| 494 |
+
else:
|
| 495 |
+
num_heads = ch // num_head_channels
|
| 496 |
+
dim_head = num_head_channels
|
| 497 |
+
if legacy:
|
| 498 |
+
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
|
| 499 |
+
self.middle_block = TimestepEmbedSequential(
|
| 500 |
+
ResBlock(
|
| 501 |
+
ch,
|
| 502 |
+
time_embed_dim,
|
| 503 |
+
dropout,
|
| 504 |
+
dims=dims,
|
| 505 |
+
use_checkpoint=use_checkpoint,
|
| 506 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 507 |
+
kernel_size_t=kernel_size_t,
|
| 508 |
+
padding_t=padding_t,
|
| 509 |
+
nonlinearity_type=nonlinearity_type,
|
| 510 |
+
**kwargs
|
| 511 |
+
),
|
| 512 |
+
STTransformerClass(
|
| 513 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 514 |
+
# temporal related
|
| 515 |
+
temporal_length=temporal_length,
|
| 516 |
+
use_relative_position=use_relative_position,
|
| 517 |
+
cross_attn_on_tempoal=cross_attn_on_tempoal,
|
| 518 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
| 519 |
+
order=order,
|
| 520 |
+
temporalcrossfirst=temporalcrossfirst,
|
| 521 |
+
split_stcontext=split_stcontext,
|
| 522 |
+
temporal_context_dim=temporal_context_dim,
|
| 523 |
+
use_tempoal_causal_attn=use_tempoal_causal_attn,
|
| 524 |
+
**kwargs,
|
| 525 |
+
),
|
| 526 |
+
ResBlock(
|
| 527 |
+
ch,
|
| 528 |
+
time_embed_dim,
|
| 529 |
+
dropout,
|
| 530 |
+
dims=dims,
|
| 531 |
+
use_checkpoint=use_checkpoint,
|
| 532 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 533 |
+
kernel_size_t=kernel_size_t,
|
| 534 |
+
padding_t=padding_t,
|
| 535 |
+
nonlinearity_type=nonlinearity_type,
|
| 536 |
+
**kwargs
|
| 537 |
+
),
|
| 538 |
+
)
|
| 539 |
+
self._feature_size += ch
|
| 540 |
+
|
| 541 |
+
self.output_blocks = nn.ModuleList([])
|
| 542 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 543 |
+
for i in range(num_res_blocks + 1):
|
| 544 |
+
ich = input_block_chans.pop()
|
| 545 |
+
layers = [
|
| 546 |
+
ResBlock(
|
| 547 |
+
ch + ich,
|
| 548 |
+
time_embed_dim,
|
| 549 |
+
dropout,
|
| 550 |
+
out_channels=model_channels * mult,
|
| 551 |
+
dims=dims,
|
| 552 |
+
use_checkpoint=use_checkpoint,
|
| 553 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 554 |
+
kernel_size_t=kernel_size_t,
|
| 555 |
+
padding_t=padding_t,
|
| 556 |
+
nonlinearity_type=nonlinearity_type,
|
| 557 |
+
**kwargs
|
| 558 |
+
)
|
| 559 |
+
]
|
| 560 |
+
ch = model_channels * mult
|
| 561 |
+
if ds in attention_resolutions:
|
| 562 |
+
if num_head_channels == -1:
|
| 563 |
+
dim_head = ch // num_heads
|
| 564 |
+
else:
|
| 565 |
+
num_heads = ch // num_head_channels
|
| 566 |
+
dim_head = num_head_channels
|
| 567 |
+
if legacy:
|
| 568 |
+
dim_head = ch // num_heads if use_temporal_transformer else num_head_channels
|
| 569 |
+
layers.append(
|
| 570 |
+
STTransformerClass(
|
| 571 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 572 |
+
# temporal related
|
| 573 |
+
temporal_length=temporal_length,
|
| 574 |
+
use_relative_position=use_relative_position,
|
| 575 |
+
cross_attn_on_tempoal=cross_attn_on_tempoal,
|
| 576 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
| 577 |
+
order=order,
|
| 578 |
+
temporalcrossfirst=temporalcrossfirst,
|
| 579 |
+
split_stcontext=split_stcontext,
|
| 580 |
+
temporal_context_dim=temporal_context_dim,
|
| 581 |
+
use_tempoal_causal_attn=use_tempoal_causal_attn,
|
| 582 |
+
**kwargs,
|
| 583 |
+
)
|
| 584 |
+
)
|
| 585 |
+
if level and i == num_res_blocks:
|
| 586 |
+
out_ch = ch
|
| 587 |
+
layers.append(
|
| 588 |
+
ResBlock(
|
| 589 |
+
ch,
|
| 590 |
+
time_embed_dim,
|
| 591 |
+
dropout,
|
| 592 |
+
out_channels=out_ch,
|
| 593 |
+
dims=dims,
|
| 594 |
+
use_checkpoint=use_checkpoint,
|
| 595 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 596 |
+
up=True,
|
| 597 |
+
kernel_size_t=kernel_size_t,
|
| 598 |
+
padding_t=padding_t,
|
| 599 |
+
nonlinearity_type=nonlinearity_type,
|
| 600 |
+
**kwargs
|
| 601 |
+
)
|
| 602 |
+
if resblock_updown
|
| 603 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, kernel_size_t=kernel_size_t, padding_t=padding_t)
|
| 604 |
+
)
|
| 605 |
+
ds //= 2
|
| 606 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 607 |
+
self._feature_size += ch
|
| 608 |
+
|
| 609 |
+
self.out = nn.Sequential(
|
| 610 |
+
normalization(ch),
|
| 611 |
+
nonlinearity(nonlinearity_type),
|
| 612 |
+
zero_module(conv_nd(dims, model_channels, out_channels, (kernel_size_t, 3,3), padding=(padding_t, 1,1))),
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
def convert_to_fp16(self):
|
| 617 |
+
"""
|
| 618 |
+
Convert the torso of the model to float16.
|
| 619 |
+
"""
|
| 620 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 621 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 622 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 623 |
+
|
| 624 |
+
def convert_to_fp32(self):
|
| 625 |
+
"""
|
| 626 |
+
Convert the torso of the model to float32.
|
| 627 |
+
"""
|
| 628 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 629 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 630 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 631 |
+
|
| 632 |
+
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, y=None, **kwargs):
|
| 633 |
+
"""
|
| 634 |
+
Apply the model to an input batch.
|
| 635 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 636 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 637 |
+
:param context: conditioning plugged in via crossattn
|
| 638 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 639 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 640 |
+
"""
|
| 641 |
+
|
| 642 |
+
hs = []
|
| 643 |
+
if time_emb_replace is None:
|
| 644 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 645 |
+
emb = self.time_embed(t_emb)
|
| 646 |
+
else:
|
| 647 |
+
emb = time_emb_replace
|
| 648 |
+
|
| 649 |
+
if y is not None: # if class-conditional model, inject class labels
|
| 650 |
+
assert y.shape == (x.shape[0],)
|
| 651 |
+
emb = emb + self.label_emb(y)
|
| 652 |
+
|
| 653 |
+
h = x.type(self.dtype)
|
| 654 |
+
for module in self.input_blocks:
|
| 655 |
+
h = module(h, emb, context, **kwargs)
|
| 656 |
+
hs.append(h)
|
| 657 |
+
h = self.middle_block(h, emb, context, **kwargs)
|
| 658 |
+
for module in self.output_blocks:
|
| 659 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 660 |
+
h = module(h, emb, context, **kwargs)
|
| 661 |
+
h = h.type(x.dtype)
|
| 662 |
+
return self.out(h)
|
lvdm/models/modules/util.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from inspect import isfunction
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from einops import repeat
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from lvdm.utils.common_utils import instantiate_from_config
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 14 |
+
if schedule == "linear":
|
| 15 |
+
betas = (
|
| 16 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
| 17 |
+
)
|
| 18 |
+
elif schedule == "cosine":
|
| 19 |
+
timesteps = (
|
| 20 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
| 21 |
+
)
|
| 22 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
| 23 |
+
alphas = torch.cos(alphas).pow(2)
|
| 24 |
+
alphas = alphas / alphas[0]
|
| 25 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
| 26 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
| 27 |
+
elif schedule == "sqrt_linear":
|
| 28 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
| 29 |
+
elif schedule == "sqrt":
|
| 30 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
| 31 |
+
else:
|
| 32 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
| 33 |
+
return betas.numpy()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
| 37 |
+
if ddim_discr_method == 'uniform':
|
| 38 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
| 39 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
| 40 |
+
elif ddim_discr_method == 'quad':
|
| 41 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
| 42 |
+
else:
|
| 43 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
| 44 |
+
|
| 45 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
| 46 |
+
steps_out = ddim_timesteps + 1
|
| 47 |
+
if verbose:
|
| 48 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
| 49 |
+
return steps_out
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
| 53 |
+
# select alphas for computing the variance schedule
|
| 54 |
+
alphas = alphacums[ddim_timesteps]
|
| 55 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
| 56 |
+
|
| 57 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
| 58 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
| 59 |
+
if verbose:
|
| 60 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
| 61 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
| 62 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
| 63 |
+
return sigmas, alphas, alphas_prev
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
| 67 |
+
"""
|
| 68 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
| 69 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
| 70 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
| 71 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
| 72 |
+
produces the cumulative product of (1-beta) up to that
|
| 73 |
+
part of the diffusion process.
|
| 74 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
| 75 |
+
prevent singularities.
|
| 76 |
+
"""
|
| 77 |
+
betas = []
|
| 78 |
+
for i in range(num_diffusion_timesteps):
|
| 79 |
+
t1 = i / num_diffusion_timesteps
|
| 80 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
| 81 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
| 82 |
+
return np.array(betas)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def extract_into_tensor(a, t, x_shape):
|
| 86 |
+
b, *_ = t.shape
|
| 87 |
+
out = a.gather(-1, t)
|
| 88 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def checkpoint(func, inputs, params, flag):
|
| 92 |
+
"""
|
| 93 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 94 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 95 |
+
:param func: the function to evaluate.
|
| 96 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 97 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 98 |
+
explicitly take as arguments.
|
| 99 |
+
:param flag: if False, disable gradient checkpointing.
|
| 100 |
+
"""
|
| 101 |
+
if flag:
|
| 102 |
+
args = tuple(inputs) + tuple(params)
|
| 103 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 104 |
+
else:
|
| 105 |
+
return func(*inputs)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 109 |
+
@staticmethod
|
| 110 |
+
@torch.cuda.amp.custom_fwd
|
| 111 |
+
def forward(ctx, run_function, length, *args):
|
| 112 |
+
ctx.run_function = run_function
|
| 113 |
+
ctx.input_tensors = list(args[:length])
|
| 114 |
+
ctx.input_params = list(args[length:])
|
| 115 |
+
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 118 |
+
return output_tensors
|
| 119 |
+
|
| 120 |
+
@staticmethod
|
| 121 |
+
@torch.cuda.amp.custom_bwd
|
| 122 |
+
def backward(ctx, *output_grads):
|
| 123 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 124 |
+
with torch.enable_grad():
|
| 125 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 126 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 127 |
+
# Tensors.
|
| 128 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 129 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 130 |
+
input_grads = torch.autograd.grad(
|
| 131 |
+
output_tensors,
|
| 132 |
+
ctx.input_tensors + ctx.input_params,
|
| 133 |
+
output_grads,
|
| 134 |
+
allow_unused=True,
|
| 135 |
+
)
|
| 136 |
+
del ctx.input_tensors
|
| 137 |
+
del ctx.input_params
|
| 138 |
+
del output_tensors
|
| 139 |
+
return (None, None) + input_grads
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 143 |
+
"""
|
| 144 |
+
Create sinusoidal timestep embeddings.
|
| 145 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 146 |
+
These may be fractional.
|
| 147 |
+
:param dim: the dimension of the output.
|
| 148 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 149 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 150 |
+
"""
|
| 151 |
+
if not repeat_only:
|
| 152 |
+
half = dim // 2
|
| 153 |
+
freqs = torch.exp(
|
| 154 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 155 |
+
).to(device=timesteps.device)
|
| 156 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 157 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 158 |
+
if dim % 2:
|
| 159 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 160 |
+
else:
|
| 161 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
| 162 |
+
return embedding
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def zero_module(module):
|
| 166 |
+
"""
|
| 167 |
+
Zero out the parameters of a module and return it.
|
| 168 |
+
"""
|
| 169 |
+
for p in module.parameters():
|
| 170 |
+
p.detach().zero_()
|
| 171 |
+
return module
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def scale_module(module, scale):
|
| 175 |
+
"""
|
| 176 |
+
Scale the parameters of a module and return it.
|
| 177 |
+
"""
|
| 178 |
+
for p in module.parameters():
|
| 179 |
+
p.detach().mul_(scale)
|
| 180 |
+
return module
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def mean_flat(tensor):
|
| 184 |
+
"""
|
| 185 |
+
Take the mean over all non-batch dimensions.
|
| 186 |
+
"""
|
| 187 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def normalization(channels):
|
| 191 |
+
"""
|
| 192 |
+
Make a standard normalization layer.
|
| 193 |
+
:param channels: number of input channels.
|
| 194 |
+
:return: an nn.Module for normalization.
|
| 195 |
+
"""
|
| 196 |
+
return GroupNorm32(32, channels)
|
| 197 |
+
|
| 198 |
+
def Normalize(in_channels):
|
| 199 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 200 |
+
|
| 201 |
+
def identity(*args, **kwargs):
|
| 202 |
+
return nn.Identity()
|
| 203 |
+
|
| 204 |
+
class Normalization(nn.Module):
|
| 205 |
+
def __init__(self, output_size, eps=1e-5, norm_type='gn'):
|
| 206 |
+
super(Normalization, self).__init__()
|
| 207 |
+
# epsilon to avoid dividing by 0
|
| 208 |
+
self.eps = eps
|
| 209 |
+
self.norm_type = norm_type
|
| 210 |
+
|
| 211 |
+
if self.norm_type in ['bn', 'in']:
|
| 212 |
+
self.register_buffer('stored_mean', torch.zeros(output_size))
|
| 213 |
+
self.register_buffer('stored_var', torch.ones(output_size))
|
| 214 |
+
|
| 215 |
+
def forward(self, x):
|
| 216 |
+
if self.norm_type == 'bn':
|
| 217 |
+
out = F.batch_norm(x, self.stored_mean, self.stored_var, None,
|
| 218 |
+
None,
|
| 219 |
+
self.training, 0.1, self.eps)
|
| 220 |
+
elif self.norm_type == 'in':
|
| 221 |
+
out = F.instance_norm(x, self.stored_mean, self.stored_var,
|
| 222 |
+
None, None,
|
| 223 |
+
self.training, 0.1, self.eps)
|
| 224 |
+
elif self.norm_type == 'gn':
|
| 225 |
+
out = F.group_norm(x, 32)
|
| 226 |
+
elif self.norm_type == 'nonorm':
|
| 227 |
+
out = x
|
| 228 |
+
return out
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class CCNormalization(nn.Module):
|
| 232 |
+
def __init__(self, embed_dim, feature_dim, *args, **kwargs):
|
| 233 |
+
super(CCNormalization, self).__init__()
|
| 234 |
+
|
| 235 |
+
self.embed_dim = embed_dim
|
| 236 |
+
self.feature_dim = feature_dim
|
| 237 |
+
self.norm = Normalization(feature_dim, *args, **kwargs)
|
| 238 |
+
|
| 239 |
+
self.gain = nn.Linear(self.embed_dim, self.feature_dim)
|
| 240 |
+
self.bias = nn.Linear(self.embed_dim, self.feature_dim)
|
| 241 |
+
|
| 242 |
+
def forward(self, x, y):
|
| 243 |
+
shape = [1] * (x.dim() - 2)
|
| 244 |
+
gain = (1 + self.gain(y)).view(y.size(0), -1, *shape)
|
| 245 |
+
bias = self.bias(y).view(y.size(0), -1, *shape)
|
| 246 |
+
return self.norm(x) * gain + bias
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def nonlinearity(type='silu'):
|
| 250 |
+
if type == 'silu':
|
| 251 |
+
return nn.SiLU()
|
| 252 |
+
elif type == 'leaky_relu':
|
| 253 |
+
return nn.LeakyReLU()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class GEGLU(nn.Module):
|
| 257 |
+
def __init__(self, dim_in, dim_out):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 260 |
+
|
| 261 |
+
def forward(self, x):
|
| 262 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 263 |
+
return x * F.gelu(gate)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class SiLU(nn.Module):
|
| 267 |
+
def forward(self, x):
|
| 268 |
+
return x * torch.sigmoid(x)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class GroupNorm32(nn.GroupNorm):
|
| 272 |
+
def forward(self, x):
|
| 273 |
+
return super().forward(x.float()).type(x.dtype)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def conv_nd(dims, *args, **kwargs):
|
| 277 |
+
"""
|
| 278 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 279 |
+
"""
|
| 280 |
+
if dims == 1:
|
| 281 |
+
return nn.Conv1d(*args, **kwargs)
|
| 282 |
+
elif dims == 2:
|
| 283 |
+
return nn.Conv2d(*args, **kwargs)
|
| 284 |
+
elif dims == 3:
|
| 285 |
+
return nn.Conv3d(*args, **kwargs)
|
| 286 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def linear(*args, **kwargs):
|
| 290 |
+
"""
|
| 291 |
+
Create a linear module.
|
| 292 |
+
"""
|
| 293 |
+
return nn.Linear(*args, **kwargs)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 297 |
+
"""
|
| 298 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 299 |
+
"""
|
| 300 |
+
if dims == 1:
|
| 301 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 302 |
+
elif dims == 2:
|
| 303 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 304 |
+
elif dims == 3:
|
| 305 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 306 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class HybridConditioner(nn.Module):
|
| 310 |
+
|
| 311 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 314 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 315 |
+
|
| 316 |
+
def forward(self, c_concat, c_crossattn):
|
| 317 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 318 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 319 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def noise_like(shape, device, repeat=False):
|
| 323 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
| 324 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 325 |
+
return repeat_noise() if repeat else noise()
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def init_(tensor):
|
| 329 |
+
dim = tensor.shape[-1]
|
| 330 |
+
std = 1 / math.sqrt(dim)
|
| 331 |
+
tensor.uniform_(-std, std)
|
| 332 |
+
return tensor
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def exists(val):
|
| 336 |
+
return val is not None
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def uniq(arr):
|
| 340 |
+
return{el: True for el in arr}.keys()
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def default(val, d):
|
| 344 |
+
if exists(val):
|
| 345 |
+
return val
|
| 346 |
+
return d() if isfunction(d) else d
|
| 347 |
+
|
| 348 |
+
|
lvdm/samplers/ddim.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from lvdm.models.modules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DDIMSampler(object):
|
| 11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.model = model
|
| 14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 15 |
+
self.schedule = schedule
|
| 16 |
+
self.counter = 0
|
| 17 |
+
|
| 18 |
+
def register_buffer(self, name, attr):
|
| 19 |
+
if type(attr) == torch.Tensor:
|
| 20 |
+
if attr.device != torch.device("cuda"):
|
| 21 |
+
attr = attr.to(torch.device("cuda"))
|
| 22 |
+
setattr(self, name, attr)
|
| 23 |
+
|
| 24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 25 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 26 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 27 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 28 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 29 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 30 |
+
|
| 31 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 32 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 33 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 34 |
+
|
| 35 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 36 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 37 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 38 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 39 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 40 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 41 |
+
|
| 42 |
+
# ddim sampling parameters
|
| 43 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 44 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 45 |
+
eta=ddim_eta,verbose=verbose)
|
| 46 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 47 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 48 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 49 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 50 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 51 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 52 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 53 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 54 |
+
|
| 55 |
+
@torch.no_grad()
|
| 56 |
+
def sample(self,
|
| 57 |
+
S,
|
| 58 |
+
batch_size,
|
| 59 |
+
shape,
|
| 60 |
+
conditioning=None,
|
| 61 |
+
callback=None,
|
| 62 |
+
img_callback=None,
|
| 63 |
+
quantize_x0=False,
|
| 64 |
+
eta=0.,
|
| 65 |
+
mask=None,
|
| 66 |
+
x0=None,
|
| 67 |
+
temperature=1.,
|
| 68 |
+
noise_dropout=0.,
|
| 69 |
+
score_corrector=None,
|
| 70 |
+
corrector_kwargs=None,
|
| 71 |
+
verbose=True,
|
| 72 |
+
schedule_verbose=False,
|
| 73 |
+
x_T=None,
|
| 74 |
+
log_every_t=100,
|
| 75 |
+
unconditional_guidance_scale=1.,
|
| 76 |
+
unconditional_conditioning=None,
|
| 77 |
+
postprocess_fn=None,
|
| 78 |
+
sample_noise=None,
|
| 79 |
+
cond_fn=None,
|
| 80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 81 |
+
**kwargs
|
| 82 |
+
):
|
| 83 |
+
|
| 84 |
+
# check condition bs
|
| 85 |
+
if conditioning is not None:
|
| 86 |
+
if isinstance(conditioning, dict):
|
| 87 |
+
try:
|
| 88 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 89 |
+
if cbs != batch_size:
|
| 90 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 91 |
+
except:
|
| 92 |
+
# cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
|
| 93 |
+
pass
|
| 94 |
+
else:
|
| 95 |
+
if conditioning.shape[0] != batch_size:
|
| 96 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 97 |
+
|
| 98 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
|
| 99 |
+
|
| 100 |
+
# make shape
|
| 101 |
+
if len(shape) == 3:
|
| 102 |
+
C, H, W = shape
|
| 103 |
+
size = (batch_size, C, H, W)
|
| 104 |
+
elif len(shape) == 4:
|
| 105 |
+
C, T, H, W = shape
|
| 106 |
+
size = (batch_size, C, T, H, W)
|
| 107 |
+
|
| 108 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 109 |
+
callback=callback,
|
| 110 |
+
img_callback=img_callback,
|
| 111 |
+
quantize_denoised=quantize_x0,
|
| 112 |
+
mask=mask, x0=x0,
|
| 113 |
+
ddim_use_original_steps=False,
|
| 114 |
+
noise_dropout=noise_dropout,
|
| 115 |
+
temperature=temperature,
|
| 116 |
+
score_corrector=score_corrector,
|
| 117 |
+
corrector_kwargs=corrector_kwargs,
|
| 118 |
+
x_T=x_T,
|
| 119 |
+
log_every_t=log_every_t,
|
| 120 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 121 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 122 |
+
postprocess_fn=postprocess_fn,
|
| 123 |
+
sample_noise=sample_noise,
|
| 124 |
+
cond_fn=cond_fn,
|
| 125 |
+
verbose=verbose,
|
| 126 |
+
**kwargs
|
| 127 |
+
)
|
| 128 |
+
return samples, intermediates
|
| 129 |
+
|
| 130 |
+
@torch.no_grad()
|
| 131 |
+
def ddim_sampling(self, cond, shape,
|
| 132 |
+
x_T=None, ddim_use_original_steps=False,
|
| 133 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 134 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 135 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 136 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 137 |
+
postprocess_fn=None,sample_noise=None,cond_fn=None,
|
| 138 |
+
uc_type=None, verbose=True, **kwargs,
|
| 139 |
+
):
|
| 140 |
+
|
| 141 |
+
device = self.model.betas.device
|
| 142 |
+
|
| 143 |
+
b = shape[0]
|
| 144 |
+
if x_T is None:
|
| 145 |
+
img = torch.randn(shape, device=device)
|
| 146 |
+
else:
|
| 147 |
+
img = x_T
|
| 148 |
+
|
| 149 |
+
if timesteps is None:
|
| 150 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 151 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 152 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 153 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 154 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 155 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 156 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 157 |
+
if verbose:
|
| 158 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 159 |
+
else:
|
| 160 |
+
iterator = time_range
|
| 161 |
+
|
| 162 |
+
for i, step in enumerate(iterator):
|
| 163 |
+
index = total_steps - i - 1
|
| 164 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 165 |
+
|
| 166 |
+
if postprocess_fn is not None:
|
| 167 |
+
img = postprocess_fn(img, ts)
|
| 168 |
+
|
| 169 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 170 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 171 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 172 |
+
corrector_kwargs=corrector_kwargs,
|
| 173 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 174 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 175 |
+
sample_noise=sample_noise,cond_fn=cond_fn,uc_type=uc_type, **kwargs,)
|
| 176 |
+
img, pred_x0 = outs
|
| 177 |
+
|
| 178 |
+
if mask is not None:
|
| 179 |
+
# use mask to blend x_known_t-1 & x_sample_t-1
|
| 180 |
+
assert x0 is not None
|
| 181 |
+
x0 = x0.to(img.device)
|
| 182 |
+
mask = mask.to(img.device)
|
| 183 |
+
t = torch.tensor([step-1]*x0.shape[0], dtype=torch.long, device=img.device)
|
| 184 |
+
img_known = self.model.q_sample(x0, t)
|
| 185 |
+
img = img_known * mask + (1. - mask) * img
|
| 186 |
+
|
| 187 |
+
if callback: callback(i)
|
| 188 |
+
if img_callback: img_callback(pred_x0, i)
|
| 189 |
+
|
| 190 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 191 |
+
intermediates['x_inter'].append(img)
|
| 192 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 193 |
+
|
| 194 |
+
return img, intermediates
|
| 195 |
+
|
| 196 |
+
@torch.no_grad()
|
| 197 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 198 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 199 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, sample_noise=None,
|
| 200 |
+
cond_fn=None,uc_type=None, model_kwargs={},
|
| 201 |
+
**kwargs,
|
| 202 |
+
):
|
| 203 |
+
b, *_, device = *x.shape, x.device
|
| 204 |
+
if x.dim() == 5:
|
| 205 |
+
is_video = True
|
| 206 |
+
else:
|
| 207 |
+
is_video = False
|
| 208 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 209 |
+
e_t = self.model.apply_model(x, t, c, **model_kwargs) # unet denoiser
|
| 210 |
+
else:
|
| 211 |
+
# with unconditional condition
|
| 212 |
+
if isinstance(c, torch.Tensor):
|
| 213 |
+
e_t = self.model.apply_model(x, t, c, **model_kwargs)
|
| 214 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **model_kwargs)
|
| 215 |
+
elif isinstance(c, dict):
|
| 216 |
+
e_t = self.model.apply_model(x, t, c, **model_kwargs)
|
| 217 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **model_kwargs)
|
| 218 |
+
else:
|
| 219 |
+
raise NotImplementedError
|
| 220 |
+
# text cfg
|
| 221 |
+
if uc_type is None:
|
| 222 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 223 |
+
else:
|
| 224 |
+
if uc_type == 'cfg_original':
|
| 225 |
+
e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 226 |
+
elif uc_type == 'cfg_ours':
|
| 227 |
+
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
|
| 228 |
+
else:
|
| 229 |
+
raise NotImplementedError
|
| 230 |
+
|
| 231 |
+
if score_corrector is not None:
|
| 232 |
+
assert self.model.parameterization == "eps"
|
| 233 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 234 |
+
|
| 235 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 236 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 237 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 238 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 239 |
+
# select parameters corresponding to the currently considered timestep
|
| 240 |
+
|
| 241 |
+
if is_video:
|
| 242 |
+
size = (b, 1, 1, 1, 1)
|
| 243 |
+
else:
|
| 244 |
+
size = (b, 1, 1, 1)
|
| 245 |
+
a_t = torch.full(size, alphas[index], device=device)
|
| 246 |
+
a_prev = torch.full(size, alphas_prev[index], device=device)
|
| 247 |
+
sigma_t = torch.full(size, sigmas[index], device=device)
|
| 248 |
+
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
|
| 249 |
+
|
| 250 |
+
# current prediction for x_0
|
| 251 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 252 |
+
# print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f)
|
| 253 |
+
if quantize_denoised:
|
| 254 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 255 |
+
# direction pointing to x_t
|
| 256 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 257 |
+
|
| 258 |
+
if sample_noise is None:
|
| 259 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 260 |
+
if noise_dropout > 0.:
|
| 261 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 262 |
+
else:
|
| 263 |
+
noise = sigma_t * sample_noise * temperature
|
| 264 |
+
|
| 265 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 266 |
+
|
| 267 |
+
return x_prev, pred_x0
|
lvdm/utils/common_utils.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import importlib
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from inspect import isfunction
|
| 8 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def str2bool(v):
|
| 12 |
+
if isinstance(v, bool):
|
| 13 |
+
return v
|
| 14 |
+
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
| 15 |
+
return True
|
| 16 |
+
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
| 17 |
+
return False
|
| 18 |
+
else:
|
| 19 |
+
raise ValueError('Boolean value expected.')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def instantiate_from_config(config):
|
| 23 |
+
if not "target" in config:
|
| 24 |
+
if config == '__is_first_stage__':
|
| 25 |
+
return None
|
| 26 |
+
elif config == "__is_unconditional__":
|
| 27 |
+
return None
|
| 28 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 29 |
+
|
| 30 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 31 |
+
|
| 32 |
+
def get_obj_from_str(string, reload=False):
|
| 33 |
+
module, cls = string.rsplit(".", 1)
|
| 34 |
+
if reload:
|
| 35 |
+
module_imp = importlib.import_module(module)
|
| 36 |
+
importlib.reload(module_imp)
|
| 37 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 38 |
+
|
| 39 |
+
def log_txt_as_img(wh, xc, size=10):
|
| 40 |
+
# wh a tuple of (width, height)
|
| 41 |
+
# xc a list of captions to plot
|
| 42 |
+
b = len(xc)
|
| 43 |
+
txts = list()
|
| 44 |
+
for bi in range(b):
|
| 45 |
+
txt = Image.new("RGB", wh, color="white")
|
| 46 |
+
draw = ImageDraw.Draw(txt)
|
| 47 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
| 48 |
+
nc = int(40 * (wh[0] / 256))
|
| 49 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
| 53 |
+
except UnicodeEncodeError:
|
| 54 |
+
print("Cant encode string for logging. Skipping.")
|
| 55 |
+
|
| 56 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
| 57 |
+
txts.append(txt)
|
| 58 |
+
txts = np.stack(txts)
|
| 59 |
+
txts = torch.tensor(txts)
|
| 60 |
+
return txts
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def ismap(x):
|
| 64 |
+
if not isinstance(x, torch.Tensor):
|
| 65 |
+
return False
|
| 66 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def isimage(x):
|
| 70 |
+
if not isinstance(x,torch.Tensor):
|
| 71 |
+
return False
|
| 72 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def exists(x):
|
| 76 |
+
return x is not None
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def default(val, d):
|
| 80 |
+
if exists(val):
|
| 81 |
+
return val
|
| 82 |
+
return d() if isfunction(d) else d
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def mean_flat(tensor):
|
| 86 |
+
"""
|
| 87 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
| 88 |
+
Take the mean over all non-batch dimensions.
|
| 89 |
+
"""
|
| 90 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def count_params(model, verbose=False):
|
| 94 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 95 |
+
if verbose:
|
| 96 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
| 97 |
+
return total_params
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def instantiate_from_config(config):
|
| 101 |
+
if not "target" in config:
|
| 102 |
+
if config == '__is_first_stage__':
|
| 103 |
+
return None
|
| 104 |
+
elif config == "__is_unconditional__":
|
| 105 |
+
return None
|
| 106 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 107 |
+
|
| 108 |
+
if "instantiate_with_dict" in config and config["instantiate_with_dict"]:
|
| 109 |
+
# input parameter is one dict
|
| 110 |
+
return get_obj_from_str(config["target"])(config.get("params", dict()), **kwargs)
|
| 111 |
+
else:
|
| 112 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_obj_from_str(string, reload=False):
|
| 116 |
+
module, cls = string.rsplit(".", 1)
|
| 117 |
+
if reload:
|
| 118 |
+
module_imp = importlib.import_module(module)
|
| 119 |
+
importlib.reload(module_imp)
|
| 120 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def check_istarget(name, para_list):
|
| 124 |
+
"""
|
| 125 |
+
name: full name of source para
|
| 126 |
+
para_list: partial name of target para
|
| 127 |
+
"""
|
| 128 |
+
istarget=False
|
| 129 |
+
for para in para_list:
|
| 130 |
+
if para in name:
|
| 131 |
+
return True
|
| 132 |
+
return istarget
|
lvdm/utils/dist_utils.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.distributed as dist
|
| 3 |
+
|
| 4 |
+
def setup_dist(local_rank):
|
| 5 |
+
if dist.is_initialized():
|
| 6 |
+
return
|
| 7 |
+
torch.cuda.set_device(local_rank)
|
| 8 |
+
torch.distributed.init_process_group(
|
| 9 |
+
'nccl',
|
| 10 |
+
init_method='env://'
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
def gather_data(data, return_np=True):
|
| 14 |
+
''' gather data from multiple processes to one list '''
|
| 15 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
| 16 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
| 17 |
+
if return_np:
|
| 18 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
| 19 |
+
return data_list
|
lvdm/utils/saving_utils.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
import imageio
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision
|
| 13 |
+
from torchvision.utils import make_grid
|
| 14 |
+
from torch import Tensor
|
| 15 |
+
from torchvision.transforms.functional import to_tensor
|
| 16 |
+
|
| 17 |
+
# ----------------------------------------------------------------------------------------------
|
| 18 |
+
def savenp2sheet(imgs, savepath, nrow=None):
|
| 19 |
+
""" save multiple imgs (in numpy array type) to a img sheet.
|
| 20 |
+
img sheet is one row.
|
| 21 |
+
|
| 22 |
+
imgs:
|
| 23 |
+
np array of size [N, H, W, 3] or List[array] with array size = [H,W,3]
|
| 24 |
+
"""
|
| 25 |
+
if imgs.ndim == 4:
|
| 26 |
+
img_list = [imgs[i] for i in range(imgs.shape[0])]
|
| 27 |
+
imgs = img_list
|
| 28 |
+
|
| 29 |
+
imgs_new = []
|
| 30 |
+
for i, img in enumerate(imgs):
|
| 31 |
+
if img.ndim == 3 and img.shape[0] == 3:
|
| 32 |
+
img = np.transpose(img,(1,2,0))
|
| 33 |
+
|
| 34 |
+
assert(img.ndim == 3 and img.shape[-1] == 3), img.shape # h,w,3
|
| 35 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 36 |
+
imgs_new.append(img)
|
| 37 |
+
n = len(imgs)
|
| 38 |
+
if nrow is not None:
|
| 39 |
+
n_cols = nrow
|
| 40 |
+
else:
|
| 41 |
+
n_cols=int(n**0.5)
|
| 42 |
+
n_rows=int(np.ceil(n/n_cols))
|
| 43 |
+
print(n_cols)
|
| 44 |
+
print(n_rows)
|
| 45 |
+
|
| 46 |
+
imgsheet = cv2.vconcat([cv2.hconcat(imgs_new[i*n_cols:(i+1)*n_cols]) for i in range(n_rows)])
|
| 47 |
+
cv2.imwrite(savepath, imgsheet)
|
| 48 |
+
print(f'saved in {savepath}')
|
| 49 |
+
|
| 50 |
+
# ----------------------------------------------------------------------------------------------
|
| 51 |
+
def save_np_to_img(img, path, norm=True):
|
| 52 |
+
if norm:
|
| 53 |
+
img = (img + 1) / 2 * 255
|
| 54 |
+
img = img.astype(np.uint8)
|
| 55 |
+
image = Image.fromarray(img)
|
| 56 |
+
image.save(path, q=95)
|
| 57 |
+
|
| 58 |
+
# ----------------------------------------------------------------------------------------------
|
| 59 |
+
def npz_to_imgsheet_5d(data_path, res_dir, nrow=None,):
|
| 60 |
+
if isinstance(data_path, str):
|
| 61 |
+
imgs = np.load(data_path)['arr_0'] # NTHWC
|
| 62 |
+
elif isinstance(data_path, np.ndarray):
|
| 63 |
+
imgs = data_path
|
| 64 |
+
else:
|
| 65 |
+
raise Exception
|
| 66 |
+
|
| 67 |
+
if os.path.isdir(res_dir):
|
| 68 |
+
res_path = os.path.join(res_dir, f'samples.jpg')
|
| 69 |
+
else:
|
| 70 |
+
assert(res_dir.endswith('.jpg'))
|
| 71 |
+
res_path = res_dir
|
| 72 |
+
imgs = np.concatenate([imgs[i] for i in range(imgs.shape[0])], axis=0)
|
| 73 |
+
savenp2sheet(imgs, res_path, nrow=nrow)
|
| 74 |
+
|
| 75 |
+
# ----------------------------------------------------------------------------------------------
|
| 76 |
+
def npz_to_imgsheet_4d(data_path, res_path, nrow=None,):
|
| 77 |
+
if isinstance(data_path, str):
|
| 78 |
+
imgs = np.load(data_path)['arr_0'] # NHWC
|
| 79 |
+
elif isinstance(data_path, np.ndarray):
|
| 80 |
+
imgs = data_path
|
| 81 |
+
else:
|
| 82 |
+
raise Exception
|
| 83 |
+
print(imgs.shape)
|
| 84 |
+
savenp2sheet(imgs, res_path, nrow=nrow)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# ----------------------------------------------------------------------------------------------
|
| 88 |
+
def tensor_to_imgsheet(tensor, save_path):
|
| 89 |
+
"""
|
| 90 |
+
save a batch of videos in one image sheet with shape of [batch_size * num_frames].
|
| 91 |
+
data: [b,c,t,h,w]
|
| 92 |
+
"""
|
| 93 |
+
assert(tensor.dim() == 5)
|
| 94 |
+
b,c,t,h,w = tensor.shape
|
| 95 |
+
imgs = [tensor[bi,:,ti, :, :] for bi in range(b) for ti in range(t)]
|
| 96 |
+
torchvision.utils.save_image(imgs, save_path, normalize=True, nrow=t)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# ----------------------------------------------------------------------------------------------
|
| 100 |
+
def npz_to_frames(data_path, res_dir, norm, num_frames=None, num_samples=None):
|
| 101 |
+
start = time.time()
|
| 102 |
+
arr = np.load(data_path)
|
| 103 |
+
imgs = arr['arr_0'] # [N, T, H, W, 3]
|
| 104 |
+
print('original data shape: ', imgs.shape)
|
| 105 |
+
|
| 106 |
+
if num_samples is not None:
|
| 107 |
+
imgs = imgs[:num_samples, :, :, :, :]
|
| 108 |
+
print('after sample selection: ', imgs.shape)
|
| 109 |
+
|
| 110 |
+
if num_frames is not None:
|
| 111 |
+
imgs = imgs[:, :num_frames, :, :, :]
|
| 112 |
+
print('after frame selection: ', imgs.shape)
|
| 113 |
+
|
| 114 |
+
for vid in tqdm(range(imgs.shape[0]), desc='Video'):
|
| 115 |
+
video_dir = os.path.join(res_dir, f'video{vid:04d}')
|
| 116 |
+
os.makedirs(video_dir, exist_ok=True)
|
| 117 |
+
for fid in range(imgs.shape[1]):
|
| 118 |
+
frame = imgs[vid, fid, :, :, :] #HW3
|
| 119 |
+
save_np_to_img(frame, os.path.join(video_dir, f'frame{fid:04d}.jpg'), norm=norm)
|
| 120 |
+
print('Finish')
|
| 121 |
+
print(f'Total time = {time.time()- start}')
|
| 122 |
+
|
| 123 |
+
# ----------------------------------------------------------------------------------------------
|
| 124 |
+
def npz_to_gifs(data_path, res_dir, duration=0.2, start_idx=0, num_videos=None, mode='gif'):
|
| 125 |
+
os.makedirs(res_dir, exist_ok=True)
|
| 126 |
+
if isinstance(data_path, str):
|
| 127 |
+
imgs = np.load(data_path)['arr_0'] # NTHWC
|
| 128 |
+
elif isinstance(data_path, np.ndarray):
|
| 129 |
+
imgs = data_path
|
| 130 |
+
else:
|
| 131 |
+
raise Exception
|
| 132 |
+
|
| 133 |
+
for i in range(imgs.shape[0]):
|
| 134 |
+
frames = [imgs[i,j,:,:,:] for j in range(imgs[i].shape[0])] # [(h,w,3)]
|
| 135 |
+
if mode == 'gif':
|
| 136 |
+
imageio.mimwrite(os.path.join(res_dir, f'samples_{start_idx+i}.gif'), frames, format='GIF', duration=duration)
|
| 137 |
+
elif mode == 'mp4':
|
| 138 |
+
frames = [torch.from_numpy(frame) for frame in frames]
|
| 139 |
+
frames = torch.stack(frames, dim=0).to(torch.uint8) # [T, H, W, C]
|
| 140 |
+
torchvision.io.write_video(os.path.join(res_dir, f'samples_{start_idx+i}.mp4'),
|
| 141 |
+
frames, fps=0.5, video_codec='h264', options={'crf': '10'})
|
| 142 |
+
if i+ 1 == num_videos:
|
| 143 |
+
break
|
| 144 |
+
|
| 145 |
+
# ----------------------------------------------------------------------------------------------
|
| 146 |
+
def fill_with_black_squares(video, desired_len: int) -> Tensor:
|
| 147 |
+
if len(video) >= desired_len:
|
| 148 |
+
return video
|
| 149 |
+
|
| 150 |
+
return torch.cat([
|
| 151 |
+
video,
|
| 152 |
+
torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1),
|
| 153 |
+
], dim=0)
|
| 154 |
+
|
| 155 |
+
# ----------------------------------------------------------------------------------------------
|
| 156 |
+
def load_num_videos(data_path, num_videos):
|
| 157 |
+
# data_path can be either data_path of np array
|
| 158 |
+
if isinstance(data_path, str):
|
| 159 |
+
videos = np.load(data_path)['arr_0'] # NTHWC
|
| 160 |
+
elif isinstance(data_path, np.ndarray):
|
| 161 |
+
videos = data_path
|
| 162 |
+
else:
|
| 163 |
+
raise Exception
|
| 164 |
+
|
| 165 |
+
if num_videos is not None:
|
| 166 |
+
videos = videos[:num_videos, :, :, :, :]
|
| 167 |
+
return videos
|
| 168 |
+
|
| 169 |
+
# ----------------------------------------------------------------------------------------------
|
| 170 |
+
def npz_to_video_grid(data_path, out_path, num_frames=None, fps=8, num_videos=None, nrow=None, verbose=True):
|
| 171 |
+
if isinstance(data_path, str):
|
| 172 |
+
videos = load_num_videos(data_path, num_videos)
|
| 173 |
+
elif isinstance(data_path, np.ndarray):
|
| 174 |
+
videos = data_path
|
| 175 |
+
else:
|
| 176 |
+
raise Exception
|
| 177 |
+
n,t,h,w,c = videos.shape
|
| 178 |
+
|
| 179 |
+
videos_th = []
|
| 180 |
+
for i in range(n):
|
| 181 |
+
video = videos[i, :,:,:,:]
|
| 182 |
+
images = [video[j, :,:,:] for j in range(t)]
|
| 183 |
+
images = [to_tensor(img) for img in images]
|
| 184 |
+
video = torch.stack(images)
|
| 185 |
+
videos_th.append(video)
|
| 186 |
+
|
| 187 |
+
if num_frames is None:
|
| 188 |
+
num_frames = videos.shape[1]
|
| 189 |
+
if verbose:
|
| 190 |
+
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
|
| 191 |
+
else:
|
| 192 |
+
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
|
| 193 |
+
|
| 194 |
+
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
|
| 195 |
+
if nrow is None:
|
| 196 |
+
nrow = int(np.ceil(np.sqrt(n)))
|
| 197 |
+
if verbose:
|
| 198 |
+
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
|
| 199 |
+
else:
|
| 200 |
+
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
|
| 201 |
+
|
| 202 |
+
if os.path.dirname(out_path) != "":
|
| 203 |
+
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
| 204 |
+
frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
|
| 205 |
+
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|
| 206 |
+
|
| 207 |
+
# ----------------------------------------------------------------------------------------------
|
| 208 |
+
def npz_to_gif_grid(data_path, out_path, n_cols=None, num_videos=20):
|
| 209 |
+
arr = np.load(data_path)
|
| 210 |
+
imgs = arr['arr_0'] # [N, T, H, W, 3]
|
| 211 |
+
imgs = imgs[:num_videos]
|
| 212 |
+
n, t, h, w, c = imgs.shape
|
| 213 |
+
assert(n == num_videos)
|
| 214 |
+
n_cols = n_cols if n_cols else imgs.shape[0]
|
| 215 |
+
n_rows = np.ceil(imgs.shape[0] / n_cols).astype(np.int8)
|
| 216 |
+
H, W = h * n_rows, w * n_cols
|
| 217 |
+
grid = np.zeros((t, H, W, c), dtype=np.uint8)
|
| 218 |
+
|
| 219 |
+
for i in range(n_rows):
|
| 220 |
+
for j in range(n_cols):
|
| 221 |
+
if i*n_cols+j < imgs.shape[0]:
|
| 222 |
+
grid[:, i*h:(i+1)*h, j*w:(j+1)*w, :] = imgs[i*n_cols+j, :, :, :, :]
|
| 223 |
+
|
| 224 |
+
videos = [grid[i] for i in range(grid.shape[0])] # grid: TH'W'C
|
| 225 |
+
imageio.mimwrite(out_path, videos, format='GIF', duration=0.5,palettesize=256)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# ----------------------------------------------------------------------------------------------
|
| 229 |
+
def torch_to_video_grid(videos, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True):
|
| 230 |
+
"""
|
| 231 |
+
videos: -1 ~ 1, torch.Tensor, BCTHW
|
| 232 |
+
"""
|
| 233 |
+
n,t,h,w,c = videos.shape
|
| 234 |
+
videos_th = [videos[i, ...] for i in range(n)]
|
| 235 |
+
if verbose:
|
| 236 |
+
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW
|
| 237 |
+
else:
|
| 238 |
+
videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW
|
| 239 |
+
|
| 240 |
+
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W]
|
| 241 |
+
if nrow is None:
|
| 242 |
+
nrow = int(np.ceil(np.sqrt(n)))
|
| 243 |
+
if verbose:
|
| 244 |
+
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
|
| 245 |
+
else:
|
| 246 |
+
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
|
| 247 |
+
|
| 248 |
+
if os.path.dirname(out_path) != "":
|
| 249 |
+
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
| 250 |
+
frame_grids = ((torch.stack(frame_grids) + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C]
|
| 251 |
+
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|