import gradio as gr from transformers import pipeline # Load a pre-trained image classification model from Hugging Face model = pipeline("image-classification", model="google/vit-base-patch16-224") # Define the prediction function def classify_image(image): predictions = model(image) return {pred["label"]: pred["score"] for pred in predictions} # Gradio Interface demo = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), title="Image Recognition AI", description="Upload an image to classify it using a pre-trained model from Hugging Face." ) # Launch the app demo.launch()