Spaces:
Build error
Build error
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw | |
import requests | |
# Load model and processor | |
model_name = "facebook/detr-resnet-50" | |
processor = DetrImageProcessor.from_pretrained(model_name) | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
# Define prediction function | |
def detect_objects(image): | |
# Preprocess image | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Process results | |
target_sizes = torch.tensor([image.size[::-1]]) # (height, width) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Draw boxes | |
draw = ImageDraw.Draw(image) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
draw.rectangle(box, outline="red", width=3) | |
draw.text((box[0], box[1]), f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}", fill="red") | |
return image | |
# Gradio interface | |
demo = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Object Detection with Bounding Boxes", | |
description="Upload an image and the AI will detect and label objects with bounding boxes using a Hugging Face model." | |
) | |
demo.launch() | |