RamaManna's picture
Create app.py
88cb4b7 verified
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image, ImageDraw
import requests
# Load model and processor
model_name = "facebook/detr-resnet-50"
processor = DetrImageProcessor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
# Define prediction function
def detect_objects(image):
# Preprocess image
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# Process results
target_sizes = torch.tensor([image.size[::-1]]) # (height, width)
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
# Draw boxes
draw = ImageDraw.Draw(image)
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
draw.rectangle(box, outline="red", width=3)
draw.text((box[0], box[1]), f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}", fill="red")
return image
# Gradio interface
demo = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Object Detection with Bounding Boxes",
description="Upload an image and the AI will detect and label objects with bounding boxes using a Hugging Face model."
)
demo.launch()