Spaces:
Sleeping
Sleeping
File size: 2,433 Bytes
7bc1e69 0698f2b 2b25983 0698f2b 7bc1e69 0698f2b 7bc1e69 2b25983 0698f2b 7bc1e69 0698f2b 7bc1e69 0698f2b 7bc1e69 2b25983 7bc1e69 0698f2b 7bc1e69 0698f2b 7bc1e69 0698f2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import cv2
import numpy as np
import torch
from PIL import Image
import gradio as gr
import re
from ultralytics import YOLO
import easyocr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
# Load models
device = "cuda" if torch.cuda.is_available() else "cpu"
# YOLOv5 for digit detection (Pre-trained model)
yolo_model = YOLO("yolov5s.pt")
# OCR Models
ocr_reader = easyocr.Reader(["en"]) # EasyOCR
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1").to(device)
# Image Preprocessing (Sharpen & Threshold)
def enhance_image(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharpened = cv2.filter2D(image, -1, kernel)
_, thresholded = cv2.threshold(sharpened, 150, 255, cv2.THRESH_BINARY)
return thresholded
# Detect Digits Using YOLOv5
def detect_digits(image):
results = yolo_model(image)
detected_numbers = [det.xyxy.tolist()[0] for det in results.pred[0] if det.conf > 0.5]
return detected_numbers
# Extract Text Using EasyOCR
def extract_text_easyocr(image):
text = " ".join(ocr_reader.readtext(image, detail=0))
return text
# Extract Text Using TrOCR
def extract_text_trocr(image):
image = Image.fromarray(image)
pixel_values = trocr_processor(images=image, return_tensors="pt").pixel_values.to(device)
generated_ids = trocr_model.generate(pixel_values)
text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return text
# Extract Weight Using Regex
def extract_weight(text):
matches = re.findall(r'\d+\.\d+|\d+', text) # Extract numeric weight
return matches[0] if matches else "Weight not detected"
# Full Processing Pipeline
def process_image(image):
enhanced = enhance_image(image)
detected_digits = detect_digits(image)
text_easyocr = extract_text_easyocr(enhanced)
text_trocr = extract_text_trocr(enhanced)
# Prioritize numeric values from OCR
weight_easyocr = extract_weight(text_easyocr)
weight_trocr = extract_weight(text_trocr)
final_weight = weight_easyocr if weight_easyocr != "Weight not detected" else weight_trocr
return final_weight or "Weight not detected"
# Gradio Interface
iface = gr.Interface(fn=process_image, inputs="image", outputs="text")
iface.launch()
|