Spaces:
Running
Running
File size: 8,196 Bytes
a8b6a3f 0ed953a a8b6a3f 0ed953a a8b6a3f 0ed953a a8b6a3f 0ed953a a8b6a3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import polars as pl
import os
from tqdm.auto import tqdm
from convert import aux_global_id_to_code, presult, ball_kind, ball_kind_code, lr, game_kind
DATA_PATH = os.path.expanduser('~/Documents/npb_data_collector/npb')
# SEASONS = list(range(2021, 2025+1))
SEASONS = [2021, 2022, 2023, 2024, 2025]
# SEASONS = [2024]
data_df = pl.DataFrame()
text_df = pl.DataFrame()
aux_df = pl.DataFrame()
sched_df = pl.DataFrame()
aux_sched_df = pl.DataFrame()
for season in tqdm(SEASONS):
_data_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_data.parquet'))
data_df = pl.concat((data_df, _data_df))
_text_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_text.parquet'))
text_df = pl.concat((text_df, _text_df))
_aux_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_aux.parquet'))
aux_df = pl.concat((aux_df, _aux_df), how='diagonal_relaxed')
_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'schedule.parquet'))
sched_df = pl.concat((sched_df, _sched_df))
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
# sched_df = sched_df.
aux_df = (
aux_df
.filter(pl.col('type') != 'RUNNER')
.join(aux_sched_df[['gameGlobalId', 'gameDate']], on='gameGlobalId')
.with_columns(
pl.col('gameDate').str.to_date().dt.strftime('%Y%m%d'),
pl.col('home').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('home'),
pl.col('visitor').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('visitor'),
pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')).alias('tob_code'),
)
.filter(
# pl.col('pitch').struct.field('count') > 0
# either one alone should be enough but let's use them together to be safe
~((pl.col('code') == 98) & (pl.col('id') == 1))
)
.with_columns(
(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('pa_count')
)
.with_columns(
pl.col('code').is_in([6402, 6404, 6406, 6405]).any().over(['gameGlobalId', 'inning', 'tob', 'pa_count']).alias('ibb')
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('new_pa_count')
)
.with_columns(
pl.len().over(['gameGlobalId', 'inning', 'tob', 'new_pa_count']).alias('pa_pitches'),
pl.max('new_pa_count').over(['gameGlobalId', 'inning', 'tob']).alias('inning_pas')
)
.with_columns(
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2) + '_' +\
pl.col('pitch').struct.field('count').cast(pl.String)
).alias('universal_code'),
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2'))
).alias('inning_code'),
(
pl.col('gameDate') + '_' + \
pl.col('visitor') + '_' + \
pl.col('home') + '_' + \
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2)
).alias('pa_code')
)
)
data_df = (
data_df
.with_columns(
*[
pl.col(col).cast(pl.Int32)
for col
in ['gameId', 'ballKind', 'ballSpeed', 'x', 'y', 'presult', 'bresult', 'battedX', 'battedY']
],
pl.col('UpdatedAt').str.to_datetime(),
pl.col('fiveDigitSerialNumber').str.slice(offset=0, length=3).alias('half_inning'),
pl.col('fiveDigitSerialNumber').str.slice(offset=3, length=2).alias('batter'),
)
.with_columns(
# pl.count('ID').over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches')
(~pl.col('presult').is_in([0])).sum().over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches'),
pl.col('presult').is_in([139]).any().over(['gameId', 'fiveDigitSerialNumber']).alias('ibb')
)
.filter(
(pl.col('pa_pitches') > 0)
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('batter'))
)
.with_columns(
pl.when(~pl.col('ibb')).then(pl.col('batter').rank('dense')).over(['gameId', 'half_inning']).cast(pl.String).str.zfill(2).alias('new_batter')
)
.with_columns(
(pl.col('half_inning') + pl.col('new_batter')).alias('newFiveDigitSerialNumber')
)
.with_columns(pl.max('new_batter').cast(pl.Int32).over(['gameId', pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)]).alias('inning_pas'))
.join(sched_df[['GameID', 'HomeTeamNameES', 'VisitorTeamNameES']].rename({'GameID': 'gameId'}), on='gameId')
.with_columns(pl.col('UpdatedAt').dt.strftime('%Y%m%d').alias('date'))
.with_columns(
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('universal_code') + '_' + pl.col('atBatBallCount'),
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)).alias('inning_code'),
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('pa_code')
)
.join(
(
aux_df.filter(~pl.col('ibb'))[['universal_code', 'battingResult', 'inning_pas', 'pa_pitches']]
.rename({'battingResult': 'aux_bresult', 'inning_pas': 'aux_inning_pas', 'pa_pitches': 'aux_pa_pitches'})
),
on='universal_code',
how='left'
)
.with_columns(
)
.join(
text_df[['GameID', 'GameKindID']].with_columns(
pl.col('GameID').cast(pl.Int32),
pl.col('GameKindID').cast(pl.Int32),
).unique(),
how='left',
left_on='gameId',
right_on='GameID'
)
.with_columns(pl.col('GameKindID').replace_strict(game_kind).alias('GameKindName'))
.with_columns(
pl.when((pl.col('inning_pas') == pl.col('aux_inning_pas')) & (pl.col('pa_pitches') == pl.col('aux_pa_pitches')))
.then('aux_bresult')
.alias('aux_bresult'),
pl.col('x').add(-100).mul(-1),
pl.col('y').neg().add(250),
pl.col('presult').alias('presult_id'),
pl.col('ballKind').replace_strict(ball_kind),
pl.col('ballKind').replace_strict(ball_kind_code).alias('ballKind_code'),
pl.col('batLR').replace_strict(lr),
pl.col('date').str.to_date('%Y%m%d'),
pl.when(pl.col('GameKindName').str.contains('Regular Season') | (pl.col('GameKindName') == 'Interleague'))
.then(pl.lit('Regular Season'))
.when(~pl.col('GameKindName').is_in(['Spring Training', 'All-Star Game']))
.then(pl.lit('Postseason'))
.otherwise('GameKindName')
.alias('coarse_game_kind'),
)
.with_columns(
pl.col('presult_id').replace_strict(presult).alias('presult')
)
.with_columns(
pl.col('presult').is_in(['None', 'Balk', 'Batter interference', 'Catcher interference', 'Pitcher delay', 'Intentional walk', 'Unknown']).not_().alias('pitch'),
pl.col('presult').is_in(['Swinging strike', 'Swinging strikeout']).alias('whiff'),
)
.with_columns(
(pl.col('pitch') & pl.col('presult').is_in(['Hit by pitch', 'Sacrifice bunt', 'Sacrifice fly', 'Looking strike', 'Ball', 'Walk', 'Looking strikeout', 'Sacrifice hit error', 'Sacrifice fly error', "Sacrifice fielder's choice", 'Bunt strikeout']).not_()).alias('swing'),
(pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw')
)
)
|