Spaces:
Running
Running
File size: 6,388 Bytes
d1369a2 65fefb5 d1369a2 65fefb5 d1369a2 65fefb5 d1369a2 65fefb5 d1369a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import polars as pl
def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None):
if start_date is not None:
data = data.filter(pl.col('date') >= start_date)
if end_date is not None:
data = data.filter(pl.col('date') <= end_date)
if game_kind is not None:
data = data.filter(pl.col('coarse_game_kind') == game_kind)
return data
def compute_team_games(data):
data = (
data
.with_columns(
pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
)
)
game_data = (
data
.group_by('HomeTeamNameES')
.first()
[['HomeTeamNameES', 'home_games']]
.rename({'HomeTeamNameES': 'team'})
.join(
(
data
.group_by('VisitorTeamNameES')
.first()
[['VisitorTeamNameES', 'visitor_games']]
.rename({'VisitorTeamNameES': 'team'})
),
on='team',
)
.with_columns((pl.col('home_games')+pl.col('visitor_games')).alias('games'))
)
return (
data
.drop('home_games', 'visitor_games')
.join(
game_data[['team', 'games']].rename({'games': 'home_games'}),
left_on='HomeTeamNameES',
right_on='team'
)
.join(
game_data[['team', 'games']].rename({'games': 'visitor_games'}),
left_on='VisitorTeamNameES',
right_on='team'
)
)
# def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1):
# assert player_type in ('pitcher', 'batter')
# assert pitch_class_type in ('general', 'specific')
# id_col = 'pitId' if player_type == 'pitcher' else 'batId'
# pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
# pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
# pitch_stats = (
# data
# .group_by(id_col, pitch_col)
# .agg(
# pl.first('pitcher_name'),
# *([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
# pl.first(pitch_name_col),
# pl.len().alias('count'),
# pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
# (pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
# (pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
# (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%')
# )
# .with_columns(
# (pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
# (pl.col('count') >= min_pitches).alias('qualified')
# )
# .explode('batType')
# .unnest('batType')
# .pivot(on='batType', values='proportion')
# .fill_null(0)
# .with_columns(
# (pl.col('G') + pl.col('B')).alias('GB%'),
# (pl.col('F') + pl.col('P')).alias('FB%'),
# pl.col('L').alias('LD%').round(2),
# )
# .drop('G', 'F', 'B', 'P', 'L', 'null')
# .with_columns(
# (pl.when(pl.col('qualified')).then(pl.col(stat)).rank()/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
# for stat in ['SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%']
# )
# .rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
# .sort(id_col, 'count', descending=[False, True])
# )
# return pitch_stats
def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1):
assert player_type in ('pitcher', 'batter')
assert pitch_class_type in ('general', 'specific')
id_col = 'pitId' if player_type == 'pitcher' else 'batId'
pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
pitch_stats = (
data
.group_by(id_col, pitch_col)
.agg(
pl.first('pitcher_name'),
*([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
pl.first(pitch_name_col),
pl.len().alias('count'),
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
(pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'),
(pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'),
((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'),
((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'),
((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'),
((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'),
((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'),
(pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
(pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
)
.with_columns(
(pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
(pl.col('count') >= min_pitches).alias('qualified')
)
.explode('batType')
.unnest('batType')
.pivot(on='batType', values='proportion')
.fill_null(0)
.with_columns(
(pl.col('G') + pl.col('B')).alias('GB%'),
(pl.col('F') + pl.col('P')).alias('FB%'),
pl.col('L').alias('LD%').round(2),
)
.drop('G', 'F', 'B', 'P', 'L', 'null')
.with_columns(
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
for stat in ['Zone%', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%']
)
.rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
.sort(id_col, 'count', descending=[False, True])
)
return pitch_stats
|