Spaces:
Running
Running
import polars as pl | |
import os | |
from tqdm.auto import tqdm | |
import pykakasi | |
from huggingface_hub import snapshot_download | |
import numpy as np | |
from string import ascii_letters | |
from convert import ( | |
aux_global_id_to_code, presult, | |
team_name_short, | |
ball_kind, ball_kind_code, general_ball_kind, general_ball_kind_code, lr, | |
game_kind | |
) | |
DATA_PATH = snapshot_download( | |
repo_id='Ramos-Ramos/npb_data_app', | |
repo_type='dataset', | |
local_dir='./files', | |
cache_dir='./.cache', | |
allow_patterns=['*/pbp_data.parquet', '*/pbp_text.parquet', '*/pbp_aux.parquet', '*/schedule.parquet', '*/aux_schedule.parquet', 'players.parquet', 'players_translated.parquet', 'players_translated_manual.parquet'] | |
) | |
SEASONS = [2021, 2022, 2023, 2024, 2025] | |
data_df = pl.DataFrame() | |
text_df = pl.DataFrame() | |
aux_df = pl.DataFrame() | |
sched_df = pl.DataFrame() | |
aux_sched_df = pl.DataFrame() | |
for season in tqdm(SEASONS): | |
_data_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_data.parquet')) | |
data_df = pl.concat((data_df, _data_df)) | |
_text_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_text.parquet')) | |
text_df = pl.concat((text_df, _text_df)) | |
_aux_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'pbp_aux.parquet')) | |
aux_df = pl.concat((aux_df, _aux_df), how='diagonal_relaxed') | |
_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'schedule.parquet')) | |
sched_df = pl.concat((sched_df, _sched_df)) | |
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet')) | |
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df)) | |
def select_name(names): | |
''' | |
When given mutiple names, | |
prioritizes the name with ASCII characters (ex. R. マルティネス > マルティネス), | |
followed by the shorter name (ex. 大勢 > 翁田 大勢) | |
Names with ASCII characters help differentiate between foreign players, | |
whlie shorter names are more accurate for players going by shorter names | |
''' | |
lens = [] | |
for name in names: | |
if any([char in ascii_letters for char in name]): | |
return name | |
else: | |
lens.append(len(name)) | |
return names[np.argmin(lens).item()] | |
# load player dfs | |
players_df = ( | |
pl.read_parquet('files/players.parquet') | |
.with_columns(pl.col('playerName').str.normalize('NFKC').str.replace_all('・', ' ')) | |
.group_by('playerId').agg(pl.col('playerName').map_elements(select_name, return_dtype=pl.String)) | |
) | |
translated_df = ( | |
pl.read_parquet('files/players_translated.parquet') | |
.with_columns(pl.col('name_jp').str.normalize('NFKC').str.replace_all('・', ' ')) | |
) | |
manual_translated_df = pl.read_parquet('files/players_translated_manual.parquet') | |
# names with no romanization are approximated with kana translation | |
kks = pykakasi.kakasi() | |
# take names in parenthesis when they contain an ascii character | |
translated_df = ( | |
translated_df | |
.with_columns( | |
pl.when(pl.col('name_jp').str.contains(r'\(')) | |
.then(pl.col('name_jp').str.extract(r'.*\(', 0).str.strip_chars_end(' (')) | |
.otherwise(pl.col('name_jp')) | |
.str.replace_all('・', ' ') | |
.alias('name_jp') | |
) | |
.with_columns(pl.col('name_kana').str.normalize('NFKC').str.replace_all('・', ' ')) | |
.with_columns(pl.col('name_kana').str.extract(r'\(.*\)', 0).str.strip_chars('()').alias('in_parentheses')) | |
.with_columns(pl.col('name_kana').str.extract(r'.*\(', 0).str.strip_chars_end('(').alias('before_parentheses')) | |
.with_columns( | |
pl.when(pl.col('name_en').is_null()) | |
.then | |
( | |
pl.when(pl.col('in_parentheses').is_not_null() | pl.col('before_parentheses').is_not_null()) | |
.then( | |
pl.when(pl.col('in_parentheses').map_elements(lambda name: any([char in ascii_letters for char in name]), pl.Boolean)) | |
.then(pl.col('in_parentheses')) | |
.otherwise(pl.col('before_parentheses')) | |
) | |
.otherwise(pl.col('name_kana').map_elements(lambda name: ''.join([word['hepburn'].capitalize() for word in kks.convert(name)]), return_dtype=pl.String)) | |
) | |
.otherwise(pl.col('name_en')) | |
.alias('name_en') | |
) | |
.with_columns(pl.col('name_en').str.replace_all(',', '').str.to_titlecase()) | |
) | |
# handle inconsistent kanji between sources | |
for old_char, new_char in [ | |
('崎', '﨑'), | |
('高', '髙'), | |
('徳', '德'), | |
('濱', '濵'), | |
('瀬', '瀨') | |
]: | |
players_df = ( | |
players_df.with_columns( | |
pl.when(~pl.col('playerName').is_in(translated_df['name_jp'])) | |
.then(pl.col('playerName').str.replace(old_char, new_char)) | |
.otherwise('playerName') | |
) | |
) | |
# merge player dfs | |
players_df = ( | |
players_df | |
.join(manual_translated_df.rename({'name_en': 'name_en_manual'}), on='playerId', how='left') | |
.join( | |
( | |
translated_df | |
.with_columns( | |
pl.when(pl.col('name_jp').str.contains(r'\.') & ~pl.col('name_jp').is_in(players_df.filter(pl.len().over('playerName') == 1)['playerName'])) | |
.then(pl.col('name_jp').str.strip_chars(ascii_letters+'.')) | |
.otherwise('name_jp') | |
) | |
[['name_jp', 'name_en']] | |
), | |
left_on='playerName', right_on='name_jp', how='left' | |
) | |
.with_columns(pl.coalesce('name_en_manual', 'name_en').alias('name_en')) | |
.unique() # remove duplicates from names with multiple matches in other dataframes | |
.drop('name_en_manual', 'name_jp') | |
# .filter(pl.col('name_en').is_null()) | |
) | |
aux_df = ( | |
aux_df | |
.filter(pl.col('type') != 'RUNNER') | |
.join(aux_sched_df[['gameGlobalId', 'gameDate']], on='gameGlobalId') | |
.with_columns( | |
pl.col('gameDate').str.to_date().dt.strftime('%Y%m%d'), | |
pl.col('home').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('home'), | |
pl.col('visitor').struct.field('globalId').replace_strict(aux_global_id_to_code).alias('visitor'), | |
pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')).alias('tob_code'), | |
) | |
.filter( | |
# pl.col('pitch').struct.field('count') > 0 | |
# either one alone should be enough but let's use them together to be safe | |
~((pl.col('code') == 98) & (pl.col('id') == 1)) | |
) | |
.with_columns( | |
(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('pa_count') | |
) | |
.with_columns( | |
pl.col('code').is_in([6402, 6404, 6406, 6405]).any().over(['gameGlobalId', 'inning', 'tob', 'pa_count']).alias('ibb') | |
) | |
.with_columns( | |
pl.when(~pl.col('ibb')).then(pl.col('pitch').struct.field('count') == 1).cum_sum().over(['gameGlobalId', 'inning', 'tob']).alias('new_pa_count') | |
) | |
.with_columns( | |
pl.len().over(['gameGlobalId', 'inning', 'tob', 'new_pa_count']).alias('pa_pitches'), | |
pl.max('new_pa_count').over(['gameGlobalId', 'inning', 'tob']).alias('inning_pas') | |
) | |
.with_columns( | |
( | |
pl.col('gameDate') + '_' + \ | |
pl.col('visitor') + '_' + \ | |
pl.col('home') + '_' + \ | |
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2) + '_' +\ | |
pl.col('pitch').struct.field('count').cast(pl.String) | |
).alias('universal_code'), | |
( | |
pl.col('gameDate') + '_' + \ | |
pl.col('visitor') + '_' + \ | |
pl.col('home') + '_' + \ | |
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) | |
).alias('inning_code'), | |
( | |
pl.col('gameDate') + '_' + \ | |
pl.col('visitor') + '_' + \ | |
pl.col('home') + '_' + \ | |
pl.col('inning').str.zfill(2) + pl.when(pl.col('tob') == 'Top').then(pl.lit('1')).otherwise(pl.lit('2')) + pl.col('new_pa_count').cast(pl.String).str.zfill(2) | |
).alias('pa_code') | |
) | |
) | |
data_df = ( | |
data_df | |
.with_columns( | |
*[ | |
pl.col(col).cast(pl.Int32) | |
for col | |
in ['gameId', 'ballKind', 'ballSpeed', 'x', 'y', 'presult', 'bresult', 'battedX', 'battedY'] | |
], | |
pl.col('UpdatedAt').str.to_datetime(), | |
pl.col('fiveDigitSerialNumber').str.slice(offset=0, length=3).alias('half_inning'), | |
pl.col('fiveDigitSerialNumber').str.slice(offset=3, length=2).alias('batter'), | |
) | |
.with_columns( | |
# pl.count('ID').over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches') | |
(~pl.col('presult').is_in([0])).sum().over(['gameId', 'fiveDigitSerialNumber']).alias('pa_pitches'), | |
pl.col('presult').is_in([139]).any().over(['gameId', 'fiveDigitSerialNumber']).alias('ibb') | |
) | |
.filter( | |
(pl.col('pa_pitches') > 0) | |
) | |
.with_columns( | |
pl.when(~pl.col('ibb')).then(pl.col('batter')) | |
) | |
.with_columns( | |
pl.when(~pl.col('ibb')).then(pl.col('batter').rank('dense')).over(['gameId', 'half_inning']).cast(pl.String).str.zfill(2).alias('new_batter') | |
) | |
.with_columns( | |
(pl.col('half_inning') + pl.col('new_batter')).alias('newFiveDigitSerialNumber') | |
) | |
.with_columns(pl.max('new_batter').cast(pl.Int32).over(['gameId', pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)]).alias('inning_pas')) | |
.join( | |
( | |
sched_df[['GameID', 'HomeTeamNameES', 'VisitorTeamNameES']] | |
.rename({'GameID': 'gameId'}) | |
.with_columns( | |
pl.col('HomeTeamNameES').replace_strict(team_name_short).alias('home_team_name_short'), | |
pl.col('VisitorTeamNameES').replace_strict(team_name_short).alias('visitor_team_name_short') | |
) | |
), | |
on='gameId' | |
) | |
.with_columns(pl.col('UpdatedAt').dt.strftime('%Y%m%d').alias('date')) | |
.with_columns( | |
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('universal_code') + '_' + pl.col('atBatBallCount'), | |
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber').str.slice(offset=0, length=3)).alias('inning_code'), | |
(pl.col('date') + '_' + pl.col('VisitorTeamNameES') + '_' + pl.col('HomeTeamNameES') + '_' + pl.col('newFiveDigitSerialNumber')).alias('pa_code') | |
) | |
.join( | |
( | |
aux_df.filter(~pl.col('ibb'))[['universal_code', 'battingResult', 'inning_pas', 'pa_pitches']] | |
.rename({'battingResult': 'aux_bresult', 'inning_pas': 'aux_inning_pas', 'pa_pitches': 'aux_pa_pitches'}) | |
), | |
on='universal_code', | |
how='left' | |
) | |
.join( | |
players_df.rename({'name_en': 'pitcher_name'}), left_on='pitId', right_on='playerId', how='left' | |
) | |
.join( | |
text_df[['GameID', 'GameKindID']].with_columns( | |
pl.col('GameID').cast(pl.Int32), | |
pl.col('GameKindID').cast(pl.Int32), | |
).unique(), | |
how='left', | |
left_on='gameId', | |
right_on='GameID' | |
) | |
.with_columns(pl.col('GameKindID').replace_strict(game_kind).alias('GameKindName')) | |
.with_columns( | |
pl.when((pl.col('inning_pas') == pl.col('aux_inning_pas')) & (pl.col('pa_pitches') == pl.col('aux_pa_pitches'))) | |
.then('aux_bresult') | |
.alias('aux_bresult'), | |
pl.col('x').add(-100).mul(-1), | |
pl.col('y').neg().add(250), | |
pl.col('presult').alias('presult_id'), | |
pl.col('ballKind').replace_strict(ball_kind), | |
pl.col('ballKind').replace_strict(ball_kind_code).alias('ballKind_code'), | |
pl.col('ballKind').replace_strict(general_ball_kind).alias('general_ballKind'), | |
pl.col('ballKind').replace_strict(general_ball_kind_code).alias('general_ballKind_code'), | |
pl.col('batLR').replace_strict(lr), | |
pl.col('pitLR').replace_strict(lr), | |
pl.col('date').str.to_date('%Y%m%d'), | |
pl.when(pl.col('GameKindName').str.contains('Regular Season') | (pl.col('GameKindName') == 'Interleague')) | |
.then(pl.lit('Regular Season')) | |
.when(~pl.col('GameKindName').is_in(['Spring Training', 'All-Star Game'])) | |
.then(pl.lit('Postseason')) | |
.otherwise('GameKindName') | |
.alias('coarse_game_kind'), | |
pl.when(pl.col('half_inning').str.ends_with(1)).then('HomeTeamNameES').otherwise('VisitorTeamNameES').alias('pitcher_team'), | |
pl.when(pl.col('half_inning').str.ends_with(1)).then('home_team_name_short').otherwise('visitor_team_name_short').alias('pitcher_team_name_short') | |
) | |
.with_columns( | |
pl.col('presult_id').replace_strict(presult).alias('presult') | |
) | |
.with_columns( | |
pl.col('presult').is_in(['None', 'Balk', 'Batter interference', 'Catcher interference', 'Pitcher delay', 'Intentional walk', 'Unknown']).not_().alias('pitch'), | |
pl.col('presult').is_in(['Swinging strike', 'Swinging strikeout']).alias('whiff'), | |
) | |
.with_columns( | |
(pl.col('pitch') & pl.col('presult').is_in(['Hit by pitch', 'Sacrifice bunt', 'Sacrifice fly', 'Looking strike', 'Ball', 'Walk', 'Looking strikeout', 'Sacrifice hit error', 'Sacrifice fly error', "Sacrifice fielder's choice", 'Bunt strikeout']).not_()).alias('swing'), | |
(pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw') | |
) | |
.with_columns((pl.col('x').is_between(-60, 60) & pl.col('y').is_between(50, 50+150)).alias('zone')) | |
.with_columns((pl.col('x').is_between(-40, 40) & pl.col('y').is_between(75, 75+100)).alias('heart')) | |
.with_columns((pl.col('x').is_between(-80, 80) & pl.col('y').is_between(25, 25+200) & ~pl.col('heart')).alias('shadow')) | |
.with_columns((pl.col('x').is_between(-100, 101) & pl.col('y').is_between(0, 0+251) & ~pl.col('heart') & ~pl.col('shadow')).alias('chase')) | |
) | |
if __name__ == '__main__': | |
breakpoint() | |